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Introduction 

In recent years a general algorithm, Restricted Maximum Likelihood (REML) has been 

developed for estimating variance parameters in linear mixed models (LMM). 

This manual will review classic statistical techniques (ANOVA & REGRESSION) and 

demonstrate how LMM (REML) can be used to analyse normally distributed data from 

virtually any situation. For balanced data, REML reproduces the statistics familiar to those 

who use ANOVA, but the algorithm is not dependent on balance. It allows for spatial and/or 

temporal correlations, so can be used for repeated measures or field-correlated data. Unlike 

ANOVA, REML allows for changing variances, so can be used in experiments where some 

treatments (for example different spacings, crops growing over time, treatments that include a 

control) have a changing variance structure. The statistical package GenStat is used 

throughout. The current version is 13, although the analyses can generally be performed 

using the Discovery Edition released in 2010. 

We have not separated the LMM (REML) section from ANOVA in this manual. The reason 

is clear. ANOVA is an appropriate analysis for a model 

 Yield = mean + fixed effects + random effects 

where the random error terms are normal, independent, each with constant variance. This 

model includes simple random sampling (there are no random effects), regression, t tests and 

analysis of variance F tests. 

LMM (REML) is also appropriate analysis for a model 

 Yield = mean + fixed effects + random effects 

where the random error terms are normal, possibly correlated, with possibly unequal 

variances. The algorithm does not insist on balanced data, unlike ANOVA. 

In general, data from two familiar text books will be used as examples. The editions we used 

are the following. 
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Estimation and modelling 
 

Whenever we conduct an experiment, no matter how complex, the analysis we perform 

always relates to way we set up the experiment: if we vary our methods, we vary the type of 

analysis we perform.  

 

Moreover, the analysis we perform is always associated with an underlying model that 

involves any factors in the experiment and includes any random terms (like experimental 

error). 

 

In this manual we will demonstrate these concepts starting from the most simple random 

sampling, and show that linear mixed models (LMM) with a residual maximum likelihood 

(REML) algorithm is a general model with an associated analysis that includes regression, 

time series and analysis of variance (ANOVA) as special cases. 

 

Random samples from a single treatment or group 

 

Example 1 Coefficients of digestibility of dry matter, fed corn silage, in percent (Steel and 

Torrie, page 93) fed to randomly selected sheep 

 

Sheep 57.8 56.2 61.9 54.4 53.6 56.4 53.2 

 

We are clearly interested in estimating the mean coefficient of digestibility for sheep, µ, 

hoping that these n = 7 randomly chosen sheep are representative of the entire population. We 

are also interested in estimating the variation in coefficients of digestibility, expressed say as 

a variance, σ2
.  

 

Assume now that the coefficient of digestibility, Y, is normally distributed, ie Y ~ N(µ, σ2
). 

Then the simple model is that for each randomly chosen sheep, its coefficient of digestibility 

will differ from the mean value µ only by a random amount, which is what we call the error. 

The errors for the 7 sheep are all assumed independent, 

 

The model for this random strategy is simply 

 

 Y = coefficient of digestibility = µ + Error 

 

where Error ~ N(0, σ2
). The parameter µ is a fixed parameter, and the parameter σ2

 is the 

only parameter in the random part of the model. 

 

Immediately we have a special case of a general model 

 

 Y = fixed parameters + random effects 

 

where the only fixed parameter is µ. Alternatively, we can pull µ out and express the model 

as 

 

 Y = µ + fixed effects + random effects 
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where in this case there are no additional fixed effects (like possible breed effects which 

make the mean coefficient of digestibility different across breeds). 

 

Maximum likelihood (ML) 

 

Parameters of distributions are often estimated using the technique of maximum likelihood 

(ML) estimation. This technique maximizes what is known as the likelihood, though it is 

equivalent, and often easier, to maximize the log-likelihood. For the normal population, the 

likelihood of a random sample of size n is simply the product of the density function of the 

normal distribution evaluated at each of the data points. The log-likelihood is therefore 
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It is straightforward (mathematically) to show that the ML estimators of µ and σ2
 are 
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Maximum likelihood estimators do not necessarily have optimal small-sample properties. It is 

true that the ML estimate of σ2
 is biased, in the sense that the mean over repeated sampling 

settles down on the value (n-1)/n × σ2
 rather than on σ2

 itself. 

 

For these data, the ML estimates are ˆ 56.214µ = , 2 7.727ns = , sn = 2.780. 

 

Early monographs such as Steel and Torrie and Snedecor and Cochran introduced the idea of 

estimating parameters like the mean µ and standard deviation σ of a normal population 

without reference to the concept of maximum likelihood. They used n as a divisor of the 

variance estimate rather than (n-1). To justify this, they talk about bias or sampling with and 

without replacement. Some authors talk about using n as the divisor when calculating the 

population variance and (n-1) when calculating the sample variance. Indeed, scientific 

calculators have σn and σn-1 buttons. Excel has VARP and VAR formulae for the two sorts of 

variances (which we label 2

ns  and 2

1ns −  

respectively), and STDEVP and STDEV 

for the equivalent standard deviations.  

 

GenStat has a menu (Stats > Distributions 

> Fit Distributions…) that allows various 

distributions to be fitted to data. 

Maximum likelihood estimation is used 

in this menu to fit the parameters of these 

distributions. As can be seen, one simply 

indicates the data to be used and selects 

the distribution to be fitted. The number 

of classifying groups and the limits are 

optional (for controlling the number and 

positions of cut-points). 
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Fit continuous distribution 

  

Sample statistics 

Sample Size  7 
Mean  56.21 
Variance  9.01 
Skewness  0.84 
Kurtosis  -0.56 
  
Quartiles: 
 25% 50% 75% 
  53.6  55.4  54.0 
   
  

Summary of analysis 

  
Observations: Sheep 
     Parameter estimates from individual data values 
Distribution: Normal (Gaussian)                
     X distributed as Normal(m,s**2) 
Deviance: 0.21 on 0 d.f. 
  
  

Estimates of parameters 

  
 estimate s.e. correlations 
m  56.2143  1.0510  1.0000   
s  2.7798  0.7435  0.0000  1.0000 

  

 

Residual maximum likelihood (REML) 

 

The idea of residual maximum likelihood (REML) is only a couple of decades old. The idea 

is this: 

 

We take the likelihood and partition it into two components. The first component is a 

likelihood of one or more statistics and involves all fixed parameters like µ (and may involve 

variance parameters as well). The second component is a residual likelihood and involves 

only the variance parameters of the random effects. We then maximize each component 

separately. The estimates of the variance parameters are known as REML estimates. 

 

For samples from a normal population, the first component turns out to be the likelihood for 

the sample mean y , the second likelihood is that of variates associated with the sample 

variance. Specifically, 

 

 log � = �− 	

 ln�2π�
/�� − 	


 � ����
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 involves µ (and, unimportantly, σ) involves σ only (not µ) 

 

The separate solutions are  

 

ML estimate of µ 
 
ML estimate of σ 
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Thus, the familiar estimate for σ2
 is actually a REML estimate, 2

1 9.015ns − = , and this 

estimate is unbiased. For more complex models, the REML estimate is less biased than the 

ML estimate.  

 

For the sheep data, REML estimates are available using the menu Stats > Mixed Models (REML) 

> Linear Mixed Models… In this menu GenStat will always fit a constant term (µ) and, if you do 

not include an error term, it will add one for you. Simply enter the coefficient of digestibility 

column as the Y-variate and leave the Fixed Model and Random Model blank. We need to click 

Predicted Means in Options, and as a general rule, click Deviance as well.  

 

 
 

REML variance components analysis 

  
Response variate: Sheep 
Fixed model: Constant 
Number of units: 7 
  
Residual term has been added to model 
  
Sparse algorithm with AI optimisation 
  

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
Residual  Identity Sigma2 9.015  5.205 
 

Table of predicted means for Constant 
  
  56.21    Standard error:  1.135 

 

REML estimate of σ2
 

ML/REML estimate of µ 

se of mean = s/√n - uses REML estimate of σ 
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Notice in the output that a “Residual term has been added to model”. We can deliberately put an 

error term if we wish (for example, if we decide to include a correlation into our model). For 

a sample of size n there are n error terms, each being independent with the same distribution, 

N(0, σ2
). We therefore need to set up a factor that contains n levels corresponding to the n 

data values. In this case we would set up a factor column with levels 1, …, 7 called say 

Replicate and use Replicate as the Random Model. Alternatively, GenStat has an in-built device 

to do this: simply type '*Units*' in the Random Model.  

 

Deviance 
 

Selecting the option Deviance produces this additional information: 

 

Deviance: -2*Log-Likelihood 

  
 Deviance d.f. 
  21.14  5 
   
Note: deviance omits constants which depend on fixed model fitted. 

 

Deviance plays the role that the Residual SS plays in ANOVA. The deviance that GenStat 

prints out is proportional to -2×LogL, where LogL is the log-likelihood of the variance 

components. (The actual definition actually has the constant 2π removed):  

 

Deviance really is only used to compare models where the null hypothesis involves the 

variance parameter of a random effect. Asymptotically, a change in deviance for one (nested) 

model compared to a larger model follows a χ2
 distribution, and the degrees of freedom to 

use are the change in df. The nested model arises by replacing in the larger model the new 

parameters that are given in the null hypothesis.  

 

 

Correlated samples 

 

Using a REML algorithm in experiments involving fixed effects and random effects is not 

restricted to independent data, or to data with the same variance in any one stratum. It is an 

extremely flexible estimating tool, and has become the standard way of analyzing data from 

agricultural trials. 

 

This manual is not a place to describe in great detail the concepts of correlated data over time. 

At this point all we want to do is demonstrate that very often we need to analyze data that is 

serially correlated. 

 

A good example to illustrate serially correlated data is the famous beaver body temperatures 

taken every 10 minutes, taken from Case Studies in Biometry (Lange et al. 1994). A plot of 

these temperatures for a single animal is shown on the left hand page, and for comparison, a 

plot of notional temperatures randomly sampled from a normal distribution at each time with 

the same mean and variance as the overall beaver temperatures had. It is clear that there is an 

essential difference between the two plots. 
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Plot of temperatures of a single beaver every ten minutes 

 

 
 

 

Notional plot of temperatures of beavers randomly selected every ten minutes 
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To emphasize the difference even more strongly, here are plots of the temperatures at time t 

plotted against the temperatures at time t-1. 

 

 
 

 

 
 

The temperatures of a single beaver are clearly correlated in time: we call this a serial 

correlation. The model is the same as the previous model for coefficients of digestibility, 

only the assumptions underlying the model are different: 

 

 Y = Temperature of a beaver = µ + Error 

 

where Error ~ N(0, σ2
), however some correlation structure exists among the individual error 

terms. This is the subject of time series analysis. 
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Time series plots for beaver data 

 

 
 

Time series plots for random data with same mean and standard deviation 

 

 
 

Sample spectrum

Sample autocorrelations

Sample partial autocorrelations

Sample values of time series: Temp_Beaver

Time

10

Lag

20 40

-1.00

-0.50

0.00

0.50

1.00

1.00

0.75

0.50

0.25

0.00

-0.25

0.0

-0.50

0.2

-0.75

0.4

-1.00

0

20

40

60

504030

0

20

50

10

60

0

-0.25

Lag

0.75

Frequency

0.3

10

50

37.4

37.2

37.0

36.8

0.25

36.6

36.4

0.1

40

30

-0.75

20

30

0.5

70

10080

A
C

F

V
a
lu

e
s

V
a
ri
a

n
ce

P
A

C
F

Sample spectrum

Sample autocorrelations

Sample partial autocorrelations

Sample values of time series: Temp_Random

Time

0

Lag

20 40

-1.00

-0.50

0.00

0.50

1.00

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

0.0

-0.75

0.2

-1.00

0.4

0

10

20

504030

30

20100

-0.75

Lag

0.25

0.1 0.5

60

15

37.2

37.0

10

36.8

36.6

-0.25

36.4

40

Frequency

25

50

0.75

0.3

20

5

10080

A
C

F

V
a
lu

e
s

P
A

C
F

V
a
ri
a

n
ce



 Statistical Advisory & Training Service Pty Ltd 

9 

 

Use Stats > Time Series > Data Exploration 

 

Beaver Random Beaver Random 

Unit ACF ACF PACF PACF 

1 1 1 1 1 

2 0.802 -0.117 0.802 -0.117 

3 0.663 0.151 0.055 0.139 

4 0.527 -0.036 -0.053 -0.004 

5 0.463 -0.021 0.115 -0.047 

6 0.353 0.149 -0.130 0.153 

7 0.245 -0.063 -0.089 -0.026 

8 0.153 0.148 -0.017 0.099 

9 0.085 -0.107 -0.030 -0.068 

10 0.061 0.050 0.077 0.005 

11 0.027 -0.074 -0.024 -0.066 

12 -0.004 0.029 -0.026 0.024 

13 -0.004 -0.023 0.075 -0.042 

14 0.009 -0.046 0.013 -0.031 

15 0.036 0.061 0.046 0.039 

16 0.056 -0.037 0.030 0.021 

17 0.039 -0.029 -0.103 -0.074 

18 0.015 0.041 -0.042 0.071 

19 0.029 -0.025 0.076 -0.011 

20 0.044 0.068 0.002 0.051 

 

Example 2 Temperatures of a single beaver taken every 10 minutes (left to right) 

 

36.33 36.34 36.35 36.42 36.55 36.69 36.71 36.75 36.81 36.88 

36.89 36.91 36.85 36.89 36.89 36.67 36.50 36.74 36.77 36.76 

36.78 36.82 36.89 36.99 36.92 36.99 36.89 36.94 36.92 36.97 

36.91 36.79 36.77 36.69 36.62 36.54 36.55 36.67 36.69 36.62 

36.64 36.59 36.65 36.75 36.80 36.81 36.87 36.87 36.89 36.94 

36.98 36.95 37.00 37.07 37.05 37.00 36.95 37.00 36.94 36.88 

36.93 36.98 36.97 36.85 36.92 36.99 37.01 37.10 37.09 37.02 

36.96 36.84 36.87 36.85 36.85 36.87 36.89 36.86 36.91 37.53 

37.23 37.20 * 37.25 37.20 37.21 37.24 37.10 37.20 37.18 

36.93 36.83 36.93 36.83 36.80 36.75 36.71 36.73 36.75 36.72 

36.76 36.70 36.82 36.88 36.94 36.79 36.78 36.80 36.82 36.84 

36.86 36.88 36.93 36.97 37.15 

 

There are various ways that we can model this correlation structure. In time series literature, 

they define autoregressive (AR) models, moving average (MA) models, combinations of 

these known as ARMA models for data, or ARIMA models for differences in data values. 

 

It is not always easy to identify which structure to 

use for a given data set. Two types of correlations 

are helpful in deciding on a particular structure. The 

set of these is known as the autocorrelation function 

(ACF) and partial autocorrelation function (PACF). 

 

The autocorrelation r1 is the sample correlation 

between successive pairs of data, {Yt, Yt-1}, lagged 

by one time period. 

 

The autocorrelation r2 is the sample correlation 

between successive pairs of data, {Yt, Yt-2}, lagged 

by two time periods, … and so on for other 

autocorrelations. 

 

The partial autocorrelation r2.1 is the sample 

correlation between successive pairs of data,  

{Yt, Yt-2}, adjusted for the effect of Yt-1. It is like 

performing a regression of Yt on Yt-1, saving the 

residuals and calculating a correlation of these with 

Yt-2. This is extended to higher-order lags as well. As 

a starting point it is conventional to define r1.0 as r1, 

the first autocorrelation. 

 

Both AC and PAC functions have specific forms for 

the different types of correlation structures. 

 

For the beaver data and the random temperature data, the ACF and PACF values are obtained 

as follows. Select Time Series > Data Exploration and the data to be investigated. In Options, 
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choose Partial Autocorrelation Functions if these are required. The default should include 

ACF and PACF plots. 

 

ACF and PACF plots for beaver temperatures and random temperatures are given on the left 

hand page for the first twenty lags. The horizontal lines on each plot are confidence bands 

around zero values.  

 

There is clearly a difference. For the beaver data, the ACF declines steadily while the PACF 

values are basically zero (note that, by definition, lag-1 correlations are unity). For the 

random data, both ACF and PACF functions are zero. 

 

In this manual we will mention three correlation structures that are commonly used in 

biological sciences. 

 

a) Uniform correlation model 

 

This model says that the correlation between two data values is the same irrespective of the 

time or distance between them.  

 

The uniform correlation matrix looks like 

"
#$

1 && 1 ⋯ & && &⋮ ⋱ ⋮& && & ⋯ 1 && 1*
+,. 

 

A uniform correlation structure applies, for example, whenever blocks are assumed random 

in a randomized block design. This means that the yields in a block are all uniformly 

correlated – which often is less than satisfactory. More likely, plots closer together are more 

highly correlated than plots far apart. 

 

It is the only correlation structure that allows a split-plot ANOVA to be used validly for units 

in an experiment that are repeatedly measured in time. 

 

b) AR1 or power model 

 

This model says that the correlation between two data values declines exponentially with the 

time or distance between them. When time intervals or distances between plots are equal, the 

model is described as an AR1 model with correlations ρ, ρ2
, ρ3, ρ4

, ….  The power model is 

more general, with a correlation of ρs
 between observations s units apart – the units can be 

unequally spaced. 

 

Data that follow an AR1 model are basically made up as follows.  

 

The observation at time t is linearly related to that at time t-1 –this is a lag 1 process 

 

Mathematically: Yt = µ + φ1 (Yt-1 - µ) + independent error, 

 

where in this model ρ = φ1. 
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The AR1 correlation matrix looks like 

"
##
##
$

1 & &
 &. &/
& 1 & &
 &.

&

&.
&/

&&

&.

1 & &
&&
 1& &1
⋯

⋮ ⋱ ⋮⋯ *
++
++
,

 

 

The beaver data appears to follow an AR1 process, since the pattern of autocorrelations is 

(approximately) 0.8, 0.8
2
=0.64, 0.8

3
=0.51, 0.8

4
=0.41, 0.8

5
=0.33, 0.8

2
=0. 26, …. The actual 

pattern is 0.8, 0.66, 0.53, 0.46, 0.35, 0.25, …. 

 

 

c) AR2 or lag 2 model 

 

For this process the dependent error depends only on the previous two dependent errors: 

 

The observation at time t depends only on the previous two observations, those at time t-1 

and at time t-2. 

 

Mathematically: Yt = µ + φ1 (Yt-1 - µ) + φ2 (Yt-2 - µ) + independent error, 

 

where in this model the correlations are &	 = φ	/�1 − φ
�, &
 = φ
 + φ	
/�1 − φ
�, … 

 

The formulae for the higher-lag correlations in the AR2 correlation matrix become more 

complex. Suffice to say that the AR2 sequence ρ, ρ2, ρ3
, ρ4, … declines somewhat faster than 

the AR1 sequence ρ, ρ2
, ρ3, ρ4

, ….  

 

 

Deciding on a correlation structure 

 

Generally we do not have a long run of correlated data, so time series devices that assist us to 

choose the most appropriate correlation model are unavailable. 

 

Since correlations are some of the parameters of the random effects, we can use change in 

deviance to test whether some are zero or not. 

 

In the AR2 model, setting φ2  = 0 produces an AR1 model. 

 

In the AR1 model, setting φ1  = 0 produces an independent model. 

 

We cannot compare uniform and AR1 models, since no value of ρ in the AR1 structure leads 

to a uniform correlation matrix. However, since a minimum deviance is associated with a 

maximum likelihood, the model having the smaller deviance is worth exploring. Generally, 

we support the choice by an investigation of the residuals: if the chosen model is appropriate, 

there should be no remaining trend in the residuals. 
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Time Series analysis of beaver data 
 

Output series: Temperature Noise model: _erp 
  
Residual deviance = 1.087 
Innovation variance = 0.009569 
  
Number of units present = 115 
Residual degrees of freedom = 112 
 

Summary of models 

 Orders: Delay AR Diff MA Seas 
Model Type B P D Q S 
  
_erp ARIMA -  1  0  0  1 
 

Parameter estimates 

Model Seas. Diff. Delay Parameter   Lag Ref Estimate   s.e. t 
 Period Order               
Noise  1  0 - Constant -  1  36.8489  0.0826  446.26 
    Phi (AR)  1  2  0.8968  0.0473  18.96 

 

 

REML analysis of beaver data 
 

Assume an AR1 stationary model for temperature. We can use change in deviance to test this 

model, namely 

 

 Temperaturet = µ + εt independent model for the errors 

 

against the AR1-correlated model 

 

 Temperaturet = µ + *

1 1t−φ ε  + εt  AR1-correlated model for the errors 

 

Note that the estimates will be slightly different than those obtained using GenStat’s Time 

Series menu. LMM (REML) used REML rather than ML to estimate the variance parameters. 

 

For the independent model, we leave the Fixed Model blank (there is no predictor variate, just 

an overall mean which GenStat adds automatically). The Random Model consists of a factor 

to identify the n units, so we could set up our own Observation factor (with n = 115 levels), or 

just use the in-built ‘*Units*’, or just leave it blank (since GenStat will add an independent 

error term for us). However, in order to set up a correlation structure later, we will add 

Observation at this stage. 

 

For the dependent model, we again leave the Fixed Model blank (there is still no predictor 

variate). The Random Model consists of a factor to identify the dependent units *

1t −ε ; we use 

the factor Observation and declare an AR1 structure for this. Note that we could also set an 

AR2 structure (which assumes that the temperature at time t depends directly on the previous 

two temperatures) and test whether this more complex model is statistically better than the 

AR1 model. Unfortunately for this example the mathematical algorithm does not converge 

for the AR2 model. 

 

Estimate of  the independent error 

component of the model 

Estimate of the correlation 

between two temperatures 

10 minutes apart 
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The deviances for the two models are as follows. Clearly the AR1 model is superior to the 

independent error model. 

 

Model deviance d.f. change in deviance change in d.f. P-value

Identity -253.56 112    

AR1 -411.23 110 157.67 2 <0.001

 

To maximize the explanation in GenStat’s output we also use click Covariance Model in the 

LMM (REML) Options. 

 

REML variance components analysis 

  
Response variate: Temp_Beaver 
Fixed model: Constant 
Random model: Observation + '*units*' 
Number of units: 114 (1 units excluded due to zero weights or missing values) 
  
'*units*' used as residual term 
 

Covariance structures defined for random model 
  
Covariance structures defined within terms: 
Term Factor Model Order No. rows 
Observation Observation Auto-regressive (+ scalar) 1 115 
  

Estimated parameters for covariance models 

Random term(s) Factor Model(order) Parameter   Estimate s.e. 
Observation Observation AR(1) phi_1  0.9337  0.0472 
     Scalar  113.4  218.2 
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Note: the covariance matrix for each term is calculated as G or R where  
 var(y) = Sigma2( ZGZ'+R ), i.e.      relative to the residual variance, Sigma2. 
  

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
 '*units*' Identity Sigma2 0.000580  0.0010881 
 

Estimated covariance models 

  
Variance of data estimated in form:   
V(y) = Sigma2( gZGZ' + I ) 
  
where: V(y) is variance matrix of data 
       Sigma2 is the residual variance 
       g is a gamma for the random term G is the covariance matrix for the random term 
       Z is the incidence matrix for the random term I is the residual (identity) covariance matrix 
 
Note: a gamma is the ratio of a variance component to the residual (Sigma2) 
Random Term: Observation 
  
G is a single matrix 
Scalar Sigma2*g: 0.06575  
  
Factor: Observation  
Model : Auto-regressive          
  
Covariance matrix (first 10 rows only): 
 1  1.000                   
 2  0.934  1.000                 
 3  0.872  0.934  1.000               
 4  0.814  0.872  0.934  1.000             
 5  0.760  0.814  0.872  0.934  1.000           
 6  0.710  0.760  0.814  0.872  0.934  1.000         
 7  0.663  0.710  0.760  0.814  0.872  0.934  1.000       
 8  0.619  0.663  0.710  0.760  0.814  0.872  0.934  1.000     
 9  0.578  0.619  0.663  0.710  0.760  0.814  0.872  0.934  1.000   
 10  0.539  0.578  0.619  0.663  0.710  0.760  0.814  0.872  0.934  1.000 
   1  2  3  4  5  6  7  8  9  10 
 
Residual term: '*units*' 
Sigma2: 0.0005800  
  
I is an identity matrix (114 rows) 
 

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  -411.23  110 
 

Table of predicted means for Constant 
 36.87 

 

Interpretation of the analysis 

 

 The REML estimate of ρ (or φ1 – labeled phi_1 in the output) is 0.9337; the ML time 

series estimate was 0.8968. Thus, the AR1 model assumes that the correlations between 

the temperatures are (0.9337)
2
 = 0.872 for two units of time apart, (0.9337)

3
 = 0.814 for 

three units of time apart, (0.9337)
4
 = 0.760 for four units of time apart, (0.9337)

5
 = 0.710 
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for five units of time apart, and so on. These values form the covariance matrix printed 

above. 

 

 The scalar 113.4 is multiplied by the “variance estimate” 0.000580 giving 0.066 as the 

REML estimate of the variance of any temperature at a particular time point. This is 

confirmed in the output (Scalar Sigma2*g: 0.06575). This is the variance of the dependent 

error term in the model.  

 

In the time series output, this needs to be reconstructed from the properties of the time 

series. For the assumptions to work, the “innovative variance”, i.e. the variance of the 

independent error component, turns out to be: 

 

variance(independent error) = (1 – ρ2
) variance(temperature at time t)  

 

Hence 

 

variance(temperature at time t) = variance(independent error) / (1 – ρ2
) 

 

which is estimated as 0.009569/(1-0.8968
2
) = 0.049. Remember this is a ML estimate. 

 

 The estimated REML model is  

 

 Temperaturet = 36.87 + 0.9337 *

1t −ε  + εt  

   = 36.87(1-0.9337) + 0.9337×Temperaturet-1 + εt-1 

   = 2.444 + 0.9337×Temperaturet-1 + εt-1 

 

Thus, the temperature at time t is approximately 2.444°C + 0.9337 times the temperature 

at time t-1. 
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Simple linear regression 

 

Example 3 Yields of potatoes receiving various amounts of fertilizer (Snedecor and 

Cochran, page 150). 

 

Amount 0 4 8 12 mean fertiliser = 6.000

Yield 8.34 8.89 9.16 9.50 mean yield = 8.973

 

The linear regression model can be expressed either as 

 

 Yield = intercept + slope × Fertiliser + Error 

 

or as 

 

 Yield = mean yield + slope (Fertiliser – mean fertiliser) + Error 

 

Notice that this model is in the form mean + fixed effect + random effect. The assumptions 

made when using a regression ANOVA (independent normally distributed errors with 

constant variance) fit within a LMM (REML) framework, and hence the analyses should be 

identical. 

 

It is the second form of the model that GenStat has as the default in its LMM (REML) menu. 

To obtain the first form, go into Options and untick Covariates Centred to Zero Mean. You 

should also click Deviance and, for regression, the Estimated Effects (that is, mean Y and 

slope, or intercept and slope respectively). 

 

 

As always, '*Units*' 

can be ignored (a 

residual term is 

added in anyway) 

unless you need to 

correlate the error 

terms. 
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Regression analysis 

  
 Response variate:  Yield 
 Fitted terms:  Constant, Amount 
 

Summary of analysis 

Source d.f. s.s. m.s. v.r. F pr. 
Regression  1  0.70312  0.703125  82.00  0.012 
Residual  2  0.01715  0.008575     
Total  3  0.72028  0.240092     
  
Percentage variance accounted for 96.4 
Standard error of observations is estimated to be 0.0926. 
  

Estimates of parameters 

Parameter estimate s.e. t(2) t pr. 
Constant  8.4100  0.0775  108.55 <.001 
Amount  0.0938  0.0104  9.06  0.012 

 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Amount 
Random model: '*units*' 
Number of units: 4 
  
'*units*' used as residual term 
 

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
' *units*' Identity Sigma2 0.00858  0.008575 
 

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  -1.75  1 
 

Wald tests for fixed effects 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Amount 82.00 1 82.00 2.0  0.012 

 

and, for the default Covariates Centred to Zero Mean: 

Table of effects for Constant 
  8.973    Standard error: 0.0463  
 

Table of effects for Amount 
  0.09375    Standard error: 0.010353  

 

If Covariates Centred to Zero Mean is unticked: 

Table of effects for Constant 
  8.410    Standard error: 0.0775  
  

Table of effects for Amount 
  0.09375    Standard error: 0.010353  
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So LMM (REML): 

 

 produces the same F statistic (82.00) as regression produces for the ANOVA(called  v.r. 

in that analysis); 

 

 produces the same line of best fit 

 Yield = 8.410 + 0.09375 Fertiliser  

or equivalently 

 Yield = 8.973 + 0.09375 (Fertiliser – 6.0) 

 

The mean amount of fertilizer (6.0) is not part of the REML output, it needs to be calculated 

separately. 
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To test H0: 
2 2

1 2σ = σ  for normally distributed 

data: 

 
2

1

2

2

obs

s
F

s
=  ∼ F variable with (n1-1) and (n1-1) df 

df = 

( ) ( )

2
2 2

1 2

1 2

2 2
2 2

1 1 2 2

1 21 1

s s

n n

s n s n

n n

   + 
  
 
 

+ − − 

 

Unpaired t test – special case of a one-way treatment design (no blocking) 

 

Example 4 Coefficients of digestibility of dry matter, of sheep and steers fed corn silage, 

in percent (Steel and Torrie, page 93) 

 

 Sheep Steers 

 57.8 64.2 

 56.2 58.7 

 61.9 63.1 

 54.4 62.5 

 53.6 59.8 

 56.4 59.2 

 53.2  

mean 56.21 61.25 

sd 3.00 2.83 

 

The first decision to make is whether you are 

prepared to believe that the two population 

variances are equal. There is a variance ratio test 

for this, but this test relies very heavily on the data 

being normally distributed, so use it with care.  

Unless you change the default in Options, GenStat 

does the F test for you.  

 

If the test does not fail, then the unpaired t test is used to test the means, with  

sed = 2

1 2

1 1
p

s
n n

 
+ 

 
 and df = ( ) ( )1 21 1n n− + − . Here, 01
 is a weighted average of the two 

treatment variances (see Appendix). 

 

If the test does fail, then an approximate t test is used to test the 

means, with sed = 
2 2

1 2

1 2

s s

n n
+ . The degrees of freedom are 

calculated from the formula alongside; if the two sample variances 

are close, the approximate df are close to (n1-1)+(n2-1). When the 

two sample variances are different, the approximate df will be 

closer to the df associated with the larger variance.  

 

To analyse the data, use Stats > Statistical Tests > One- and two-sample t-tests…. GenStat 

allows the data to be organized either in separate columns for the separate treatments, or in 

one combined data column plus a factor column to identify which observation each treatment 

belongs to. Since this is a special case of a more general design, we chose to illustrate the 

latter approach, see the output on the left hand page. 

 

For the coefficients of digestibility of dry matter,  

 there is no evidence (P=0.580) that the population variances are not equal 

 there is strong evidence (P=0.007) that the population means are different. Steers have 

coefficients of digestibility that are, on average, 5.0% higher than for sheep. We are 95% 

confident that the true difference is between 1.7% and 8.4%. 
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GenStat’s unpaired t test procedure 

 

 
 

 

Two-sample t-test 
  
Variate: Digestibility 
Group factor: Treatment 
  

Test for equality of sample variances 

 
Test statistic F = 1.70 on 6 and 5 d.f. 
Probability (under null hypothesis of equal variances) = 0.58 
  

  

Summary 

        Standard  Standard error 
Sample  Size  Mean  Variance  deviation  of mean 
Sheep  7  56.21  9.015  3.002  1.135 
Steers  6  61.25  5.299  2.302  0.940 
  
Difference of means:  -5.036 
Standard error of difference:  1.506 
  
95% confidence interval for difference in means: (-8.350, -1.721) 
  

Test of null hypothesis that mean of Digestibility with Treatment = Sheep 
is equal to mean with Treatment = Steers 

  
Test statistic t = -3.34 on 11 d.f. 
Probability = 0.007 

 

  

When we analyse these 

data via ANOVA, this 

“missing value” may 

cause problems – see later 

Step 1. GenStat tests  

H0: 
2 2

1 2σ = σ  using F= 2 2

1 2/s s . 

Here there is no evidence that the 

population variances are not equal 

(P=0.580). 
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One-way (no Blocking) Model 

 

Apart from individual random errors, the only possible differences in the data can come from 

individual treatment effects, leading to a model 

 

 Yield = mean + treatment effect + error 

 

With t treatments, there can only be t-1 treatment effects in a model that contains an overall 

mean: the effects measure how far a particular treatment is from the overall mean. Note that 

the general regression model allows factors as explanatory variates. ANOVA is therefore just 

a special case of multiple linear regression. However, the model is also a special case of a 

LMM, and hence the t-test can be performed using ANOVA, regression or LMM (REML). 

 

Regression output 

Here is GenStat’s output from Stats > Regression Analysis > Linear Models and choosing 

General Linear Regression from the drop down selection. The model is referenced to level 1 

(Sheep), hence Constant is the estimate of the Sheep mean. The coefficient Treatment Steers is 

what you add to the Constant to obtain the mean for the second level (Steers) and hence is the 

difference in means (Steers-Sheep). 

 

Regression analysis 

  
 Response variate:  Digestibility 
 Fitted terms:  Constant, Treatment 
  

Summary of analysis 

Source d.f. s.s. m.s. v.r. F pr. 
Regression  1  81.93  81.927  11.18  0.007 
Residual  11  80.58  7.326     
Total  12  162.51  13.543     
  
Percentage variance accounted for 45.9 
Standard error of observations is estimated to be 2.71. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 3  61.90  2.27 
  

Estimates of parameters 

Parameter estimate s.e. t(11) t pr. 
Constant  56.21  1.02  54.95 <.001 
Treatment Steers 5.04  1.51  3.34  0.007 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Treatment   Sheep 

 

  

 Same P-value as 

that for t test of 

means 

 

 v.r. = t
2
  

11.18 = 3.34
2
 

 

 7.326 is the 

pooled estimate 

of variance 

 

 Constant is mean 

for level 1 Sheep 

 

 Difference in 

means is 5.04 

 

 sem = 1.02 for 
Sheep 
 

 sed = 1.51 
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Analysis of Variance output 

 

Use Stats > Analysis of Variance. There is a special menu item for this design, but we prefer 

to use the General analysis of variance. We have also gone into Options and selected l.s.d.s. 

Without changing the stacked spreadsheet, the output is as follows. 

 

Analysis of variance 

  
Variate: Digestibility 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
Treatment 1    88.754  88.754  12.12  0.005 
Residual 11 (1)  80.584  7.326     
Total 12 (1)  162.511       
  

Message: the following units have large residuals. 
*units* 3    5.69  s.e.   2.40 
  

Tables of means 

Grand mean  58.73  
  
 Treatment  Sheep  Steers 
   56.21  61.25 
 

Standard errors of differences of means 

Table Treatment   
rep.  7   
d.f.  11   
s.e.d.  1.447   
  
(Not adjusted for missing values) 
 

Least significant differences of means (5% level) 

Table Treatment   
rep.  7   
d.f.  11   
l.s.d.  3.184   
  
(Not adjusted for missing values) 

 

This is not exactly the same analysis, because with unequally replicated treatments, if you 

leave a row in with an asterisk (*) to signify a missing value, GenStat assumes you want to 

estimate the missing value. This is rather an old fashioned approach. It over-estimates the 

Treatment SS and the resulting variance ratio is therefore too large. 

 

If you really do have missing values, there is an Unbalanced Treatment Structure you can use 

in this case. (Basically, GenStat analyses the data via regression for you.)  

 

If this is a case of a deliberate choice of sample size (for example, these are the only steers 

you could get hold of), then a correct analysis is obtained after deleting the row with the *. 

 

Here are both analyses. The similarities are obvious. 
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Unbalanced Treatment Structure output 

 

(i) Including the row with the missing value, choosing Unbalanced Treatment 

Structure  

Analysis of an unbalanced design using GenStat regression 

 

Accumulated analysis of variance 

Change d.f. s.s. m.s. v.r. F pr. 
+ Treatment  1  81.927  81.927  11.18  0.007 
Residual  11  80.584  7.326     
Total  12  162.511  13.543     
 

Predictions from regression model 
  Prediction 
 Treatment   
 Sheep 56.21 
 Steers 61.25 
 
Standard error of differences between predicted means 1.506 
Least significant difference (at 5.0%) for predicted means 3.314  

 

(ii) Deleting the row with the non-observed value, choosing General Analysis of 

Variance 

Analysis of variance 

  
Variate: Digestibility 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Treatment 1  81.927  81.927  11.18  0.007 
Residual 11  80.584  7.326     
Total 12  162.511       
  

Message: the following units have large residuals. 
*units* 3    5.69  approx. s.e.   2.49 
 

Tables of means 

  
Grand mean  58.54  
  
 Treatment  Sheep  Steers 
   56.21  61.25 
  rep.    7  6 
 

Standard errors of differences of means 

Table Treatment   
rep. unequal   
d.f.  11   
s.e.d.  1.506   
 

Least significant differences of means (5% level) 

Table Treatment   
rep. unequal   
d.f.  11   
l.s.d.  3.314   
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LMM (REML) analysis of one-way design (no blocking) 

 

The Fixed Model is again Treatment. Since there is only one random error term we can ignore 

the Random Model, since as always GenStat allows us to omit the error in the final stratum – 

it adds it in for us. Tick to obtain deviances and predicted means. From Version 11 l.s.d. 

values can be selected as well. Missing values are ignored, as in regression, so the * that may 

be in the stacked dataset is simply ignored. 

 

REML variance components analysis 

  
Response variate: Coefficient 
Fixed model: Constant + Treatment 
Number of units: 13 (1 units excluded due to zero weights or missing values) 
  
Residual term has been added to model 
  

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
Residual  Identity Sigma2 7.326  3.124 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  36.64  10 
   
Note: deviance omits constants which depend on fixed model fitted. 
  

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Treatment 11.18 1 11.18 11.0  0.007 
  

Message: denominator degrees of freedom for approximate F-tests are calculated 
using algebraic derivatives ignoring fixed/boundary/singular variance parameters. 
  
Standard error of differences: 1.506  
 

Table of predicted means for Constant 
  
  58.73    Standard error:  0.753 
 

Table of predicted means for Treatment 
 
 Treatment Sheep Steers 
  56.21 61.25 
 
Standard error of differences: 1.506   
 

Approximate least significant differences (5% level) of REML means 
Treatment 
Treatment Sheep  1  *  
Treatment Steers 2  3.314  * 
   1 2 
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Notice that regression, LMM (REML) and ANOVA (except with the missing unit retained) 

analyses give virtually the same information as the t test did. We obtained: 

 

 the equivalent test statistic (F instead of t
2
); 

 

 the same P-value for testing the difference between the two means (0.007); 

 

 the same estimate of variance (7.326) and hence the same s.e.d. value (1.506); 

 

 the same means and l.s.d. values 

 

An advantage to the t test is the calculation of the confidence interval for treatment mean 

difference (µsteers-µsheep).  With the other approaches you need to add and subtract the l.s.d. 

value (3.314) to the mean difference (61.25-56.21) to obtain the confidence interval. Another 

advantage is the default automatic check on equality of treatment variances, which is a very 

important assumption underlying ANOVA. We will demonstrate how to do this in LMM 

(REML) with the next example. 

 

An advantage to the ANOVA approach is that unusual values (ie standardized residuals 

outside the range (-2, +2)) are flagged. It is also important to routinely examine 

(standardized) residual plots. 
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Normal plot

Fitted-value plot

Half-Normal plot

Histogram of residuals

-0.5 0.75-1.0 1.000.0 1.251.0 1.50 1.75 2.00

0

-1.0

0.0

1.0

Expected Normal quantiles

-1

0.0

0.2

1.0

0.4

0.0

0.6

-1.0

0.8

-2

1.0

1.2

1.4

1.6

1197

0.00 0.500.5

-1.5

0.5

654

Fitted values

1.5

-0.5

8

0.251.5

5

-0.5

4

3

2

0.5

1

0

10

-1.5

1.5

-1.5

Expected Normal quantiles

21

R
e

si
d

u
a
ls

A
b

so
lu

te
 v

a
lu

e
s 

o
f r

e
si

d
u

a
ls

R
e

si
d
u

a
ls

Fine_gravel

Unpaired t test – example of unequal variances – Satterthwaite’s approximate t test 

 

Example 5 Fine gravel in soil, in percent (Steel and Torrie, page 107) 

 

 Good soil Poor soil 

 5.9 7.6 

 3.8 0.4 

 6.5 1.1 

 18.3 3.2 

 18.2 6.5 

 16.1 4.1 

 7.6 4.7 

mean 10.91 3.94 

variance 40.12 6.95 

 

Both means and variances in the 

two samples appear to be 

different. What statistical 

evidence is there that the mean 

percentage of fine gravel in the 

soil differs in the two soil types? 

 

We first analysed the data via a 

one-way (no blocking) analysis 

of variance, and examined the 

residual plot. It is clear that the 

soil with the higher fitted value 

(obviously the good soil) has a 

larger visual scatter of residuals compared to that for the poor soil. This is a reflection of the 

different variances in the two samples.  

 

An analysis in GenStat via a t test results in strong statistical evidence (P = 0.020) that the 

mean percentages of fine gravel differ. However, the test of equal variances is marginal. 

GenStat actually proceeds to use the standard unpaired t test because technically the F test 

does not fail (P = 0.05 to two decimals; it is actually 0.0509). We make three points. 

 

 The F test depends heavily on normally distributed data, and percentages are unlikely to 

be normally distributed, so the P-value is somewhat unreliable.  

 Failure to reject in this case is most likely to be caused by the low level of replication. 

 We often make decisions about homogeneity of variance in more complex analyses of 

variance from an inspection of the standardized residual plot, rather than a formal test. 

 

As mentioned previously, the default in GenStat for this test is to allow it to decide 

automatically what test to use for the means. To illustrate the approximate procedure, we 

over-rode GenStat by going into the Options menu, as shown. The change for an equally 

replicated experiment is only in the df of the t test (and hence in the P-value). Remember, it is 

not an exact t test. Here, the df used are obtained from the Satterthaite formula and are closer 

to 6 than to 12, since the variances are quite different in the sample. 
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GenStat output for the automatic t test of the fine gravel data 

Two-sample t-test 
  
Variate: Fine_gravel 
Group factor: Soil 
   

Test for equality of sample variances 

Test statistic F = 5.77 on 6 and 6 d.f. 
Probability (under null hypothesis of equal variances) = 0.05  

 

Summary 

        Standard  Standard error 
Sample  Size  Mean  Variance  deviation  of mean 
good  7  10.914  40.12  6.334  2.394 
poor  7  3.943  6.95  2.636  0.996 
  
Difference of means:  6.971 
Standard error of difference:  2.593 
  
95% confidence interval for difference in means: (1.321, 12.62) 
  

Test of null hypothesis that mean of Fine_gravel with Soil = good is 
equal to mean with Soil = poor 

  

Test statistic t = 2.69 on 12 d.f. 

Probability = 0.020 

 

 
 

Difference of means:  6.971 
Standard error of difference:  2.593 
  
95% confidence interval for difference in means: (0.9937, 12.95) 
 

Test of null hypothesis that mean of Fine_gravel with Soil = good is 
equal to mean with Soil = poor 

  

Test statistic t = 2.69 on approximately 8.02 d.f. 

Probability = 0.028 

Step 1. Test for 

equality of variances 

Step 2. Test for 

equality of means 

Change to Step 2. Calculates 

approximate df for t test (8 

instead of 12) and gives new P-

value 

Over-riding the Automatic procedure, 

forcing an unequal variance t test 
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LMM (REML) output for two sample t test (unequal variances) 

 

The model for this dataset is as follows. 

 

 Fine gravel percentage = mean + soil effect + error. 

 

There are two competing hypotheses as far as variances are concerned. The first is that the 

variance of the good soil is equal to that of the poor soil. The alternative is that they are 

different. Since these are parameters in the random part of the model, we test equality by 

change in deviance. 

 

Equality of variances is represented in the Correlated Error Terms sub-menu as an Identity 

variance matrix. For this matrix, the off-diagonal elements are all zero, reflecting the absence 

of any correlation in the data; the diagonal elements are all unity, reflecting the equality of 

variances. The variance matrix is actually σ2
 times the identity matrix. 

 

Inequality of variances is represented in the Correlated Error Terms sub-menu as a Diagonal 

variance matrix. For this matrix, the off-diagonal elements are again zero, reflecting the 

absence of any correlation; the diagonal elements are different multipliers, reflecting the 

equality of variances. The different variances are obtained by multiplying σ2
 by the diagonal 

elements of the variance matrix. 

 

In order to actually access the Correlated Error Terms sub-menu, we need to enter the residual 

term ourselves. As always, the residual term must be a factor that indexes over all the data, in 

such a way as the factor Soil is present. Then we can set the levels of that factor to have a 

Diagonal variance matrix. We therefore need to set up a Replicate factor to index over the 7 

replicates of each of good and poor soil: 
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We run the analysis twice, once with Identity and once with Diagonal and record the deviance 

information: 

 

Model Estimates of parameters in model Deviance d.f. P 

unequal variances 
2

goodσ  = 40.1 (6 df), 
2

poorσ  =6.9 (6 df) 49.68 10  

equal variances σ2
 = weighted average = 7.326 53.79 11  

change in deviance  4.11 1 0.043 

 

Here, the change in deviance is based on an asymptotic χ2
 distribution, not the F distribution. 

Since we have significance at 5%, we use the unequal variance output. 

 

REML variance components analysis 

  
Response variate: Fine_gravel 
Fixed model: Constant + Soil 
Random model: Replicate.Soil 
Number of units: 14 
  
Replicate.Soil used as residual term with covariance structure as below 
  

Covariance structures defined for random model 
  
Covariance structures defined within terms: 
  
Term Factor Model Order No. rows 
Replicate.Soil Replicate Identity 0 7 
 Soil Diagonal 2 2 
 

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
Replicate.Soil Sigma2 1.000 fixed 
 
 Replicate Identity -         - - 
 Soil Diagonal d_1  40.12  23.17 
     d_2  6.950  4.012 
  
  

Deviance: -2*Log-Likelihood 

  
 Deviance d.f. 
  49.68  10 
   
Note: deviance omits constants which depend on fixed model fitted. 
  

Tests for fixed effects 

  
Sequentially adding terms to fixed model  
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Soil 7.23 1 7.23 8.0  0.028 
  

Message: denominator degrees of freedom for approximate F-tests are calculated 
using algebraic derivatives ignoring fixed/boundary/singular variance parameters. 

d_1 and d_2 are the diagonal 

elements and represent the 

two soil variances 

The F statistic is identical to the square of the 

Satterthwaite t test obtained earlier: 

Test statistic t = 2.69 on approximately 8.02 d.f. 
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Table of predicted means for Constant 
  
  7.429    Standard error:  1.2966 
  

Table of predicted means for Soil 
 
 Soil Good_soil Poor_soil 
  10.914 3.943 
 
Standard error of differences: 2.593  
  

Approximate least significant differences (5% level) of REML means 
  

Soil 
 
        
 Soil Good_soil 1  *  
 Soil Poor_soil 2  5.980  * 
    1 2 

 

 

Note. If GenStat produces a Sigma2 value that is not unity, then d_1 will be 1.000 and d_2 a 

multiplier different to 1.000. These are GenStat’s gamma (multiplier) values. The Sigma 

parameterization is easily obtained by capturing the REML line, copying it to a new Input 

window and modifying the PARAMETERIZATION option: 

 
REML [PRINT=model,components,means,deviance,waldTests; PSE=differences;\ 

PARAMETERIZATION=sigmas;MVINCLUDE=*; METHOD=ai; MAXCYCLE=20000] Fine_gravel 

 

 

 

 

 

Appropriate l.s.d. value 
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Paired t test – special case of a one-way treatment design (in randomised blocks) 

 

Example 6 Sugar concentrations of nectar in half heads of red clover kept at different 

vapor pressures for eight hours (from Steel and Torrie, page 103) 

 

Head 4.4 mm Hg 9.9 mm Hg difference 

1 62.5 51.7 10.8 

2 65.2 54.2 11.0 

3 67.6 53.3 14.3 

4 69.9 57.0 12.9 

5 69.4 56.4 13.0 

6 70.1 61.5 8.6 

7 67.8 57.2 10.6 

8 67.0 56.2 10.8 

9 68.5 58.2 10.3 

10 62.4 55.8 6.6 

mean 67.04 56.15 10.89 

sd 2.82 2.72 2.22 

 

This example is quite different to the previous two examples. In this case, we cannot place 

the 10 concentrations in any order in each column: they are paired. The heads of red clover 

are divided into half heads; one is randomly subjected to a vapor pressure of 4.4 mm Hg, the 

other to a vapor pressure of 9.9 mm Hg. Each head of clover is likely to vary in its sugar 

concentration, and the only way to remove this variation is to take differences, and analyse 

these in a one sample t test. 

 

When we have more than two treatments in an experiment that is blocked in some way, then 

we need to analyse the data using an ANOVA F test, setting up a “block” factor as well as a 

“treatment” factor. 

 

Firstly, in GenStat, paired t test data must be set up in separate columns for separate 

treatments. 

 

As a paired t test 
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One-sample t-test 
  
Variate: Y[1]. 
         Standard  Standard error 
Sample  Size  Mean  Variance  deviation  of mean 
VP_4_4-VP_9_9  10  10.89  4.914  2.217  0.7010 
  
95% confidence interval for mean: (9.304, 12.48) 
  

Test of null hypothesis that mean of VP_4_4-VP_9_9 is equal to 0 

  

Test statistic t = 15.53 on 9 d.f. 

Probability < 0.001 

 

There is strong statistical evidence (P<0.001) that the mean sugar concentration of nectar 

differs in heads of red clover kept at different vapor pressures for eight hours. The best 

estimated mean difference is 10.89%, and we are 95% confident that the true difference lies 

between 9.30% and 12.48%. 

 

To analyse the data via ANOVA or regression, we must stack the data, and provide a factor 

column to identify the various head (acting as blocks). 

 

Paired t test as a one-way treatment design (in randomized blocks) 

 

 
 

Notice in the output that GenStat organizes the ANOVA into the two strata for this 

experiment. Individual heads form the top stratum, and since these are not replicated (there is 

no other “head 1” or “head 2” etc), there is no P-value for this variance ratio. The second 

stratum is the “Heads.Units” stratum, that is, the half head put into one of two vapor pressure 

treatments (at random). These are replicated in a balanced way (each treatment occurs once in 

each block). 

 

Thus, the actual block structure is Head + Head.Vapor_Pressure or Head.Vapor_Pressure (see 

GenStat’s syntax rules in the Appendix). The final error term has been dropped from the 

Blocks structure, as GenStat always allows this final stratum to be ignored (it adds it for us).
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Analysis of variance 

  
Variate: Concentration 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Head stratum 9  116.114  12.902  5.25   
  
Head.*Units* stratum 
Vapor_Pressure 1  592.960  592.960  241.32 <.001 
Residual 9  22.115  2.457     
  
Total 19  731.189       
  

Message: the following units have large residuals. 
Head 10 *units* 1    -2.14  s.e.   1.05 
Head 10 *units* 2    2.14  s.e.   1.05 
 

Tables of means 

  
Variate: Concentration 
  
Grand mean  61.60  
  
 Vapor_Pressure  4.4  9.9 
   67.04  56.15 
  

Standard errors of differences of means 

  
Table Vapor_Pressure   
rep.  10   
d.f.  9   
s.e.d.  0.701   
  

Least significant differences of means (5% level) 

  
Table Vapor_Pressure   
rep.  10   
d.f.  9   
l.s.d.  1.586   
 

Estimated stratum variances 

Stratum variance  effective d.f.   variance component  
Head  12.902  9.000  5.222 
Head.*Units*  2.457  9.000  2.457 

 

Again, notice  

 the relationship between the t-value of 15.53, and the F-value of 241.32 (15.53
2
= 241.32); 

 

 the same P-value (P<0.001, though it is hard to see the similarity, P is so small; 

 

 the mean difference is 67.04 - 56.15 = 10.89 ± 1.586, giving rise to the same confidence 

interval. 
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Regression output 

 

Remember that a t test is just a special case of regression. There are two models to consider 

when testing whether the vapor pressure treatment effect is zero. 

 

Maximal model  

Sugar concentration = overall mean + Head effect + Vapor pressure effect + Error 

 

Reduced model  

Sugar concentration = overall mean + Head effect  + Error 

 

Technically you need to run both models. The best estimate of error variance is obtained as 

the Residual MS from the ANOVA of the maximal model. The effect of treatments over and 

above that of blocks is obtained by subtracting the residual sums of squares from the two 

ANOVAs; divide this by the change in degrees of freedom to obtain the Treatment MS. The 

variance ratio is constructed as the ratio of the Treatment MS and Residual MS from the 

maximal model. 

 

In GenStat’s General Linear Regression Option menu, the effect of blocks (Heads) and 

treatments (vapor pressure) can be assessed by turning on Accumulated. 

 

Via regression 

 
 

Regression analysis 

  
 Response variate:  Concentration 
 Fitted terms:  Constant + Head + Vapor_Pressure 
 

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  10  709.08  70.908  28.86 <.001 
Residual  9  22.11  2.457     
Total  19  731.19  38.484     
  
Percentage variance accounted for 93.6 

dropped 
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Standard error of observations is estimated to be 1.57. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 10  62.40  -2.04 
 20  55.80  2.04 
  

Estimates of parameters 

Parameter estimate s.e. t(9) t pr. 
Constant  62.55  1.16  53.80 <.001 
Head 2  2.60  1.57  1.66  0.132 
Head 3  3.35  1.57  2.14  0.061 
Head 4  6.35  1.57  4.05  0.003 
Head 5  5.80  1.57  3.70  0.005 
Head 6  8.70  1.57  5.55 <.001 
Head 7  5.40  1.57  3.44  0.007 
Head 8  4.50  1.57  2.87  0.018 
Head 9  6.25  1.57  3.99  0.003 
Head 10  2.00  1.57  1.28  0.234 
Vapor_Pressure 9.900  -10.890  0.701  -15.53 <.001 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Head   1 
 Vapor_Pressure   4.400 
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Head  9  116.115  12.902  5.25  0.011 
+ Vapor_Pressure  1  592.961  592.961  241.32 <.001 
Residual  9  22.114  2.457     
Total  19  731.190  38.484     

 

The default model produces a Constant (the mean for vapor pressure 4.4) and a mean 

difference of -10.890, labeled Vapor_Pressure 9.900. This is highly significant, with a t-value 

of -15.53, the same (apart from sign) as was produced by the paired t test. The Accumulated 

analysis is the RCBD ANOVA, though it is an application of the general technique for 

comparing a maximal and reduced model. 

 

Notice also that 1.16 is actually the s.e.m. and 0.701 the s.e.d.. 

 

 

LMM (REML) analysis of one-way treatment design in randomized blocks 

 

Blocks in a field experiment are almost always treated as random factors, although it makes 

no difference to the test of treatment means whether it is treated as fixed or random – we will 

demonstrate this property later. 

 

In this case, the factor Head is almost certainly a random factor: heads were chosen from a 

large number of heads, at random. GenStat assumed it to be random in the ANOVA output, 

producing variance components for the Head stratum as well as the Heads.Units stratum: 
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Estimated stratum variances 

Stratum variance  effective d.f.   variance component  
Head  12.902  9.000  5.222 
Head.*Units*  2.457  9.000  2.457 

 

Hence, for linear mixed models, we have: 

 

Fixed Model: Vapor_Pressure. 
Random Model Head + Head.Vapor_Pressure  
 (or Head/Vapor_Pressure, or for simplicity Head since GenStat adds an 

error term for the lowest stratum if we omit it). 

 

REML variance components analysis 

  
Response variate: Concentration 
Fixed model: Constant + Vapor_Pressure 
Random model: Head + Head.Vapor_Pressure 
Number of units: 20 
  
Head.Vapor_Pressure used as residual term 
 

Estimated variance components 

Random term component s.e. 
Head  5.222  3.096 
 

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
 Head.Vapor_Pressure Identity Sigma2 2.457  1.158 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  53.71  16 
 

Wald tests for fixed effects 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Vapor Vapour_pressure 241.32 1 241.32 9.0 <0.001 
 

Table of predicted means for Constant 
  61.59    Standard error:  0.803 
 

Table of predicted means for Vapor_Pressure 

 Vapor_Pressure 1 2 
  67.04 56.15 
  
Standard error of differences: 0.7010  
 

Approximate least significant differences (5% level) of REML means 
 
Vapour_pressure 
 Vapour_pressure %4_4_mm_Hg 1  *  
 Vapour_pressure %9_9_mm_Hg 2  1.586  
    1 2 

   

The F statistic is identical 

to the variance ratio in the 

ANOVA, as are df. 

identical to the Residual MS of the ANOVA 

identical to the Head stratum variance of the ANOVA 

Means, s.e.d. and l.s.d. values are 

identical to those from the ANOVA. 
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Pots are numbered 1 to 50. Random 

allocation of the Control treatment is 

shown 

1 2 3 4 5 

Control     Control   

6 7 8 9 10 

  Control   Control   

11 12 13 14 15 

Control         

16 17 18 19 20 

      Control Control 

21 22 23 24 25 

    Control     

26 27 28 29 30 

Control         

31 32 33 34 35 

          

36 37 38 39 40 

          

41 42 43 44 45 

      Control   

46 47 48 49 50 

          

 

Completely randomized design (CRD), or one-way design (no blocking) 

 

The data are from an experiment in plant physiology. Lengths of pea sections grown in tissue 

culture with auxin present were recorded. The purpose of the experiment was to test the 

effects of various sugar media on growth as measured by length. 

 

Treatment structure: Single factor with 5 levels: sugar treatments (including a control) 

Block Structure: None: 10 replicates for all treatments 

 

Example 7 The effect of different sugars on length, in ocular units (×  0.114 = mm), of 

pea sections grown in tissue culture with auxin present (Sokal & Rohlf 3
rd

 Ed. 

page 218) 

 

Replicate Control 2% glucose 

added 

2% fructose 

added 

1% glucose + 1% 

fructose added 

2% sucrose 

added 

1 75 57 58 58 62 

2 67 58 61 59 66 

3 70 60 56 58 65 

4 75 59 58 61 63 

5 65 62 57 57 64 

6 71 60 56 56 62 

7 67 60 61 58 65 

8 67 57 60 57 65 

9 76 59 57 57 62 

10 68 61 58 59 67 

 

In this experiment we have 50 pots (labelled 1 to 50) with no blocking required. The pots are 

placed in a growth chamber, and the treatments randomized to the pots (eg using GenStat’s 

Design menu; notice that GenStat creates a factor column Pots, with levels 1 to 50): 
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Data and analysis in GenStat 

We firstly stack the data into a variate labelled Length, and create an identifier factor for the 

Sugar treatments. It is much more sensible to use treatment labels or treatment levels where 

possible. (Note that this can be done while stacking the data.) GenStat will always use labels 

or levels in its output. You can see that GenStat replaces the identifying numbers with actual 

labels.  

 

 
 

Choose One- and Two-way to obtain the basic CRD ANOVA; alternatively, choose General 

Analysis of Variance and use Pots as the Block Structure. Note that GenStat allows the final 

stratum to be omitted, so you can, for this design, leave the Block Structure blank. Notice that 

we selected to output the 5% l.s.d. values. The s.e.(difference) is set as the default output; we 

could also have chosen to obtain the s.e.(mean). The (standardised) residual plot can be 

drawn once the analysis is obtained: return to the Analysis of Variance window, select Further 

Output, Residual Plots and Standardized. 
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Analysis of variance 

  
Variate: Length 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Sugar 4  1077.320  269.330  49.37 <.001 
Residual 45  245.500  5.456     
Total 49  1322.820       
  

Message: the following units have large residuals. 
*units* 5    -5.10  s.e.   2.22 
*units* 9    5.90  s.e.   2.22 
  

Tables of means 

  
Variate: Length 
  
Grand mean  61.94  
  
 Sugar Control Glucose Fructose GlucFruc Sucrose 
   70.10  59.30  58.20  58.00  64.10 
  

Standard errors of means 

Table Sugar   
rep.  10   
d.f.  45   
e.s.e.  0.739   
  

Standard errors of differences of means 

Table Sugar   
rep.  10   
d.f.  45   
s.e.d.  1.045   
 

Least significant differences of means (5% level) 

Table Sugar   
rep.  10   
d.f.  45   
l.s.d.  2.104   

 

Notice: 

 

 5.456 is the average of the sample variances 15.878, 2.678, 3.511, 2.000, 3.211, each with 

(10-1) = 9 df. 

 

 269.33 is the weighted sample variance of the sugar means 70.1, 59.3, 58.2, 58.0, 64.1. 

Since an unweighted variance would (if the population treatment means were all equal) 

estimate σ2
/10, the Sugar MS is 10 × sample variance. 

 

Before discussing the analysis in any more detail, we should inspect the (standardized) 

residual plot. 
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There are problems with this analysis. 

The standardised residual plot uncovers a 

large variance for the data in the 

treatment with the largest fitted value, 

which on inspection is the Control 

treatment. This is common in agricultural 

trials, and leads to special ways of 

analysing the data.  

 

Sometimes it is possible to find a 

transformation that overcomes the 

problem, especially if the problem is one 

of fanning. Fanning often indicates log-

normal (rather than normal) data, or data 

for which the variance increases as 

mean
2
. 

 

In this case, untreated data simply behave 

differently to treated data in terms of 

variability. One possibility is to separate 

out the treated and control data, and 

analyse these sets of data separately. The variance for the untreated data is very large (15.878 

with 9 df) compared to the variances for the treated data (whose average is 2.850 with 4 × 9 = 

36 df). Keeping the treated data allows fair comparisons among the four sugar treatments. If 

one really wanted to compare the control mean with one of the four sugar means, a variation 

of Satterthwaite’s approximate t test (see page 39) can be used.  

 

Alternatively, a Linear Mixed Model can be used that allows two variances, one for untreated 

data and another for treated data. Both tests (tests of equality of the four sugar treatment 

means, test of the mean of the untreated data versus the mean of the treated data) are done in 

the one analysis. 

Restricting the analysis to a subset of treatments 

 

There are several ways to do this, but the easiest 

is click inside the spreadsheet, then select 
Spread > Restrict/Filter > To Groups (factor 

levels), select the Control treatment and Exclude. 

 

Now click back into the Analysis of Variance 

box and click on OK to re-run the analysis. The 

sugar means are the same (as they must be) but 

the Control mean is left blank. The Residual MS 

is now only 2.850 instead of the earlier 5.456, 

representing a much fairer variance estimate for 

comparing the 4 sugar means (resulting in a 

reduced l.s.d. value of 1.531 instead of the 

earlier 2.104).  

 

 

Length

Normal plot

Histogram of residuals

Half-Normal plot

Fitted-value plot
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Analysis of variance 

  
Variate: Length 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Sugar 3  245.000  81.667  28.65 <.001 
Residual 36  102.600  2.850     
Total 39  347.600       
  

Tables of means 

Grand mean  59.90  
  
 Sugar Control Glucose Fructose GlucFruc Sucrose 
    59.30  58.20  58.00  64.10 
 

Standard errors of differences of means 

Table Sugar   
rep.  10   
d.f.  36   
s.e.d.  0.755   
  

Least significant differences of means (5% level) 

Table Sugar   
rep.  10   
d.f.  36   
l.s.d.  1.531 

 

To compare the Control mean (which has an estimated standard deviation of s1 = 3.985 with 9 

df) with one of the 4 sugar means (which has an estimated standard deviation of sp = 2.850  

= 1.688 with 36 df) is achieved by an extension of Satterthwaite’s test. 

 

Approximate t test of µuntreated =  µsucrose 

 

Difference in means = 70.1 – 64.1 = 6.0. sed = 

22

1

1 2

1.873
p

ss

n n
+ =  = 1.368. Hence,  

 

 tobs = 6.0/1.368 = 4.38. 

 

The degrees of freedom are calculated from a formula modified using the formula on page 

34, with n2=10 and n2=40.  

df = 

( ) ( )

2
22

1

1 2

2 2
2 2

1 1 2

2

1 1 of

p

p

p

ss

n n

s n s n

n df s

  
 +    
 
 

+ − 

 = 12.42. 

 

There is strong statistical evidence (P<0.001) that the control and sucrose means are 

different. The modified df for comparing the control mean against the mean of all 4 sugar 

treatments (i.e for n2=40) is 9.82.  
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LMM (REML) analysis of CRD (unequal variances) 

 

Firstly, the treatment variances (each with 9 df) fall into two groups. The variance for the 

untreated pots (15.878) appears quite different to that for the treated pots. The average 

variance for treated pots is 2.850. 

 

Treatment variances 

Control glucose 2% fructose 2% gluc_fruct 1% sucrose 2% 

15.878 2.678 3.511 2.000 3.211 

 

As before, the Fixed Model is the Sugar factor with 5 levels. 

 

The Random Model is Pots (a factor with levels 1 to 50). However, this model assumes that 

the variance is constant (Identity). We are interested in allowing the variance to change 

depending on the treatment. 

 

The worst case is when every treatment has a different variance. What is believed is that only 

the Control treatment has a different variance. 

 

Another way of extracting the tests of interest is  

 

 to compare treated and untreated pots; 

 

 for the treated pots, to compare among the four sugar treatments. 

 

The spreadsheet can be set up with a factor (called say Control_Rest) to identify control and 

treated pots. We will use the label “control” to identify a control pot and a label “treated” to 

identify a treated pot. 

 

Among the treated pots, the four sugar treatments can be compared using GenStat’s nested 

shortcut. In other words, the treatment structure is: 

 

 Fixed Model: Control_Rest/Sugar 

 

The following choices set up difference variance structures among the treatments 

 

Random Model: Pots.Sugar allows a different variance for all 5 sugar treatments 

by selecting Diagonal for Sugar in Correlated Error 

Terms 

Random Model: Pots.Control_Rest sets up one variance for the control treatment, and a 

separate variance for the other 4 sugar treatments, 

by selecting Diagonal for Control_Rest in Correlated 

Error Terms; 

Random Model: Pots sets up a constant variance for all 5 treatments by 

selecting Identity for Pot in Correlated Error Terms. 

 

The models can be compared by change in deviance as usual. 
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Note that the default in GenStat is to produce multipliers rather than actual variances when 

selecting a Diagonal variance structure. To have GenStat print out the different variance 

estimates instead, use the  

 
PARAMETERIZATION=sigmas 

 

option of REML. You will need to run the default model, copy the three lines from the Input 

window, add the option and re-run the window. 

 

 
 

The deviances for each of the three models are as follows. 

 

Model Random Model Deviance d.f. 
Change in 

deviance 

Change in 

d.f. 
P value 

All 5 treatment 

variances different
Pots.Sugar 118.3 40 0.80 3 0.849 

Control variance 

different
Pots.Control_Rest 119.1 43 13.76 1 <0.001 

Common variance Pots 132.86 44    
 

Clearly allowing the control treatment to have a different variance is a better assumption than 

one with all variances equal (P<0.001); it appears unnecessary to allow all five treatments 

variances to be different (P=0.849). 

 

Having the Fixed Model as Control_Rest/Sugar allows the comparison of the control treatment 

with the remaining sugar treatments to be equivalent to a t test with unequal variances. The 

apparent interaction Control_Rest.Sugar is actually a main effect, testing the differences 

among the four sugar treatments. 

 

The full analysis is as follows (using the sigmas parameterization).. 
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REML variance components analysis 

  
Response variate: Length 
Fixed model: Constant + Control_Sugar_F + Control_Sugar_F.Sugar 
Random model: Pots.Control_Sugar_F 
Number of units: 50 
  
Residual term has been added to model 
  

Covariance structures defined for random model 
  
Covariance structures defined within terms: 
  
Term Factor Model Order No. rows 
Pots.Control_Sugar_F Pots Identity 0 50 
 Control_Sugar_F Diagonal 2 2 
  

Estimated parameters for covariance models 

  
Random term(s) Factor Model(order) Parameter   Estimate s.e. 
Pots.Control_Sugar_F 
 Pots Identity -         - - 
 Control_Sugar_F Diagonal d_1  14.88  7.48 
     d_2  1.850  0.672 
  

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
Residual  Identity Sigma2 1.000 aliased 

 

For this parameterization, individual variances are estimated to be 

 var(yield) = 1.000 × (14.88+1.000) = 15.88 for control data, and 

= 1.000 × (1.850+1.000) =   2.85 for treated data. 

 

Notice that 15.877 is actually the sample variance of the control data, whereas 2.850 is the 

average of the four sugar variances, each with 9 df. Hence the variance estimate for the 

control data has 9 df, while the average sugar variance has 36 df. 

 

Deviance: -2*Log-Likelihood 

  
 Deviance d.f. 
  119.10  43 
   
Note: deviance omits constants which depend on fixed model fitted. 
  
  

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Control_Sugar_F 62.71 1 62.71 9.8  <0.001 
Control_Sugar_F.Sugar 85.96 3 28.65 36.0  <0.001 
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Table of predicted means for Control_Rest.Sugar 

 

Sugar: Control gluc_2% fruc_2% gluc_fruc_1% gluc_fruc_1% 

Control_Sugar_F      
control 70.10 * * * * 

treated * 59.30 58.20 58.00 64.10 

 

Since the means have one of two estimated variances, the s.e.d. values will differ depending 

on whether a control mean is involved (1.37), or not (0.75). Use the Standard Errors All 

Differences option to obtain a complete set of s.e.d and l.s.d. values. 

 

Notice the following. 

 

 The Wald F statistic and d.f. for the (nested) component Control_Rest.Sugar are the same 

as those from th ANOVA of just the treated data: 

 

Analysis of variance 

Source of variation d.f. s.s. m.s. v.r. F pr. 
Sugar 3  245.000  81.667  28.65 <.001 
Residual 36  102.600  2.850     
Total 39  347.600       

  

 The Wald F statistic and d.f. for the component Control_Sugar_F.Sugar are the same those 

from the Satterthwaite approximate t test of the control mean versus the mean of all 

treated pots: 

 

 Control mean = 70.1 (based on 10 observations), var = 15.878, df = 9 

 Sugar mean = 59.9 (based on 40 observations), var =   2.850, df = 36 

 

 Difference in means = 10.2,  
15.878 2.850

s.e.d. = 1 288
10 40

.+ =  

 t = 10.2/1.288 = 7.919, or F = t
2
 = 7.919

2
 = 62.711 (d.f. calculation shown earlier). 

 

 

Using contrasts in REML 

 

There is an FCONTRASTS procedure (from version 12) that allows you to fit contrasts in 

REML by commands. However, we have done this directly in the spreadsheet menu 

choosing, by way of illustration:  

 

(i) control vs overall sugar,  

(ii) sucrose vs other sugar treatments, 

(iii) glucose vs fructose, and 

(iv) the mean of glucose and fructose vs the combination glucose/fructose treatment 

 

To set these variates up, each time click in the Sugar factor column and use Spread > Factor > 

Recode. We need a variate and hence untick Create as a Factor and tick Recode to Numeric. 

Define the new values and name the contrast appropriately, as shown in the following screen 

capture: 
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Simply replace the Fixed Model Control_Sugar_F/Sugar with  

 
Control_Sugar+GF_G_F+G_F+S_others 

 

The output is the same as before, with individual Wald F statistics for each of the 4 contrasts 

instead. The design is balanced, hence test of the sequential terms and dropping each term 

last are the same. 

 

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Control_Sugar 62.71 1 62.71 9.8  <0.001 
GF_G_F 1.32 1 1.32 36.0  0.259 
G_F 2.12 1 2.12 36.0  0.154 
S_others 82.53 1 82.53 36.0  <0.001 
  
Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Control_Sugar 62.71 1 62.71 9.8  <0.001 
GF_G_F 1.32 1 1.32 36.0  0.259 
G_F 2.12 1 2.12 36.0  0.154 
S_others 82.53 1 82.53 36.0  <0.001 
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Meta Analysis - REML of Multiple Experiments menu 

 

Prof Roger Payne kindly pointed out a more simple method of obtaining the analysis where 

the variance changes across (part of) one or more factors. This menu allows you to specify a 

changing variance across different experiments. In this case, we imagine that the control pots 

come from a separate experiment than the treated pots. 

 

The Fixed Model is either Control_Rest/Sugar or Control_Sugar+GF_G_F+G_F+S_others as 

before.  

 

The Random Model is Pots, since the changing variance is declared in the next line. Pots can 

be omitted, as is usual for a simple CRD (since GenStat adds an error term if one is not 

provided). 

 

In this case, on the Experiments line simply indicate the factor Control_Sugar_F that 

contains the information to identify how the variance changes.  

 

 
 

The output is the same as before with the exception of a more simple presentation of the 

variance estimates: 
 

Residual model for each experiment 
  
Experiment factor: Control_Sugar_F  
  
Experiment Term Factor Model(order) Parameter Estimate s.e. 
Control Residual Identity Variance 15.88 7.48 
Treated Residual Identity Variance 2.850 0.672 
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Two-way design (no blocking) with subsamples 

 

Mint plants were assigned at random to pots, 4 plants per pot, 18 pots in all and grown in a 

nutrient solution. Three pots were randomly assigned to one of six treatment combinations, as 

follows. All pots were randomly located during the time spent at either 8, 12 or 16 hours of 

daylight. Each group of pots was completely randomized within low- or high-temperature 

greenhouses during the time spent in darkness. Individual plants stem lengths were measured 

after one week. 

 

Example 8 One week stem lengths (cm, Steel and Torrie pages 153-9) 

 

Temperature 

High Low 

Hours of Daylight Hours of Daylight 

8 12 16 8 12 16 

pot pot pot pot Pot pot 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

3.5 2.5 3.0 5.0 3.5 4.5 5.0 5.5 5.5 8.5 6.5 7.0 6.0 6.0 6.5 7.0 6.0 11.0 

4.0 4.5 3.0 5.5 3.5 4.0 4.5 6.0 4.5 6.0 7.0 7.0 5.5 8.5 6.5 9.0 7.0 7.0 

3.0 5.5 2.5 4.0 3.0 4.0 5.0 5.0 6.5 9.0 8.0 7.0 3.5 4.5 8.5 8.5 7.0 9.0 

4.5 5.0 3.0 3.5 4.0 5.0 4.5 5.0 5.5 8.5 6.5 7.0 7.0 7.5 7.5 8.5 7.0 8.0 

 

This design is slightly complex, in that half the pots have a restricted randomization for the 

time spent in one of the two greenhouses, each set at a different temperature. Ignoring that 

problem, it is clear that pots form replicates for the six treatment combinations: a pot 

containing 4 plants is moved to a random daylight position and a random position in a 

greenhouse; the 4 plants form sampling units. 

 
Treatment Structure 
You need to supply two factor columns, properly labeled, to identify the six Temperature and 

Light treatment combinations applied to each pot. The Treatment Structure is then 

Temperature + Light + Temperature.Light. By the Rule 2 simplifies to Temperature*Light. 

 
Block Structure 
Choice 1 

Generally we recommend that the replicates be numbered from 1 to the total number of 

replicates, across all treatments . There are 18 pot replicates, and in our spreadsheet we called 

this column Pots. Plants in pots are samples. There are two strata, and hence the Block 

Structure is Pots+Pots.Plant. By Rule 3 this simplifies to Pots/Plant. GenStat also allows the 

final error term to be omitted, so Pots is also permissible. 

 

Choice 2 (not recommended) 

Steel and Torrie, however, used 1, 2, 3 for each treatment combination, so we differentiate 

this factor as Pot. If you decide to use this numbering system, then the Block Structure cannot 

be Pot/Plant: as mentioned, this expands to Pot+Pot.Plant, and GenStat will assume that Pot 

#1 in every treatment is a block. Rather, you need to use Pot.Treatment/Plant, which expands 

to Pot.Treatment + Pot.Treatment.Plant. Here, Treatment is a factor that enumerates all six 

treatments and Pot has levels 1, 2, 3. We don’t have such a treatment factor column, so you 

would need to Insert a new column and Fill this column from 1 to 6, each number repeated 

nine times. The analysis is identical to that obtained in Choice 1. 
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Analysis of Two-way Design (no Blocking) with subsamples 

 

  

 

Analysis of variance 

  
Variate: Length 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Pots stratum 
Temperature 1  151.6701  151.6701  70.45 <.001 
Light 2  22.2986  11.1493  5.18  0.024 
Temperature.Light 2  5.6736  2.8368  1.32  0.304 
Residual 12  25.8333  2.1528  2.30   
  
Pots.Plant stratum 54  50.4375  0.9340     
  
Total 71  255.9132       
… 
 

Tables of means 

  
Variate: Length 
  
Grand mean  5.78  
  
 Temperature  High  Low 
   4.33  7.24 
  
 Light  8.  12.  16. 
   5.50  5.29  6.56 
  
 Temperature Light  8.  12.  16. 
 High   3.67  4.12  5.21 
 Low   7.33  6.46  7.92 
  

Standard errors of differences of means 

  
Table Temperature Light Temperature   
   Light   
rep.  36  24  12   
d.f.  12  12  12   
s.e.d.  0.346  0.424  0.599   

Tests these means 
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Least significant differences of means (5% level) 

Table Temperature Light Temperature   
   Light   
rep.  36  24  12   
d.f.  12  12  12   
l.s.d.  0.753  0.923  1.305 

 

When interpreting this analysis, it is important to interpret the interaction first (for more 

complex designs, from highest-order interaction backwards). A two-way interaction tests 

whether any change in the response of the plant to temperature is consistent for both high and 

low temperatures. Thus, it examines the response to temperature in the following table. The 

response is best plotted (Further Output > Means Plot). 

 

 Hours of light 

Temperature 8 12 16 

High 3.67 4.12 5.21 

Low 7.33 6.46 7.92 
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The responses are 

parallel within statistical 

variation (P = 0.304). 

Hence, attention can 

focus on the average 

effect of temperature, as 

well as the average effect 

of light. These are 

known as main effects. 

Both are strongly 

significant – see the 

ANOVA table. 
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Interest focuses on how much variation is there from plant to plant (the sampling variance) as 

opposed to pot to pot variation. Note that each of 6 treatments provides (3-1) = 12 residual df 

for estimating σ2
. 

 

Estimates of the sampling and experimental variances are obtained by clicking on Stratum 

Variances in Options prior to running the analysis. The output is the following. There is three 

times more variation between plants in a pot than between pots. 

 

Estimated stratum variances 

  
Variate: Length 
  
Stratum  variance  effective d.f.   variance component  

Pots  2.153  12.000  0.305 variance among pots 

Pots.Plant  0.934  54.000  0.934 variance among plants in a pot 

 

Finally, below is the standardised residual plot. You can make up your own mind whether the 

variation across all sampling units is constant. 

 

 
 

 

  

Histogram of residuals

Half-Normal plot

Fitted-value plot

Normal plot

-2

0 1 2

2.5

3

1.5

0.5

1.0

0.0

2.51.50.5

Expected Normal quantiles

-2

0

5

10

1

-1

2

1

1

-1

0

Expected Normal quantiles

-1

-2

2.00.0

-1

2

-2

2

98

2.0

76-3 543

0

Fitted values

15

20

1.0

0

A
b

so
lu

te
 v

a
lu

e
s 

o
f r

e
si

d
u

a
ls

R
e

si
d

u
a

ls

R
e

si
d

u
a

ls

Length



 Statistical Advisory & Training Service Pty Ltd 

52 

 

LMM (REML) analysis 

 

The Treatment Structure is Temperature*Light and the Block Structure is Pots.Plants.  

 

Here is the LMM (REML) analysis. The means are as before and are suppressed in this 

output. 

 

REML variance components analysis 

  
Response variate: Length 
Fixed model: Constant + Light + Temperature + Light.Temperature 
Random model: Pot + Pot.Plant 
Number of units: 72 
  
Pot.Plant used as residual term 
 

Estimated variance components 

Random term component s.e. 
Pot  0.3047  0.2243 
 

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
 Pot.Plant Identity Sigma2 0.934  0.1798 
 

Approximate stratum variances 

Stratum variance effective d.f. 
Pot  2.1528  12.00 
Pot.Plant  0.9340  54.00 
 

Wald tests for fixed effects 

Sequentially adding terms to fixed model 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Light 10.36 2 5.18 12.0  0.024 
Temperature 70.45 1 70.45 12.0 <0.001 
Light.Temperature 2.64 2 1.32 12.0  0.304 

 

Notice: 

 

 The variance estimates (and df) are the same as obtained from ANOVA; 

 

 The F statistics and P values are the same as those from the ANOVA.  

 

 

 

 

  

Use Fisher scoring to obtain this 
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BLOCK 1  BLOCK 2  BLOCK 3 

Variety 1 

Spaced 4” 
1 

Variety 3 

Spaced 8” 
1 

Variety 1 

Spaced 4” 

Variety 1 

Spaced 12” 
2 

Variety 3 

Spaced 4” 
2 

Variety 3 

Spaced 4” 

Variety 3 

Spaced 4” 
3 

Variety 1 

Spaced 4” 
3 

Variety 2 

Spaced 8” 

Variety 1 

Spaced 8” 
4 

Variety 2 

Spaced 8” 
4 

Variety 3 

Spaced 8” 

Variety 2 

Spaced 12” 
5 

Variety 1 

Spaced 8” 
5 

Variety 2 

Spaced 4” 

Variety 3 

Spaced 8” 
6 

Variety 3 

Spaced 12” 
6 

Variety 1 

Spaced 8” 

Variety 3 

Spaced 12” 
7 

Variety 2 

Spaced 4” 
7 

Variety 2 

Spaced 12” 

Variety 2 

Spaced 4” 
8 

Variety 2 

Spaced 12” 
8 

Variety 3 

Spaced 12” 

Variety 2 

Spaced 8” 
9 

Variety 1 

Spaced 12” 
9 

Variety 1 

Spaced 12” 

 

Two-way design (in randomized blocks) 

 

Snedecor and Cochran present the yields of cowpea hay (pounds per 1/100 Morgen plot) 

from 3 varieties, each grown with 3 row spacings (4”, 8” and 12” apart). 

 

Firstly, let’s use GenStat’s Design menu to generate a field plan (the monograph does not 

give us a field layout). One random design is the following: 

 

 
 

Note that spacing experiments, by definition, are unlikely to produce plot mean (or plot total) 

yields whose variances are constant. Why is that? 
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From statistical theory, if you add independent variates whose individual variances are the 

same, the variance of the sum is the sum of the individual variances. Let σ2
 be the variance 

on a per plant basis. Then, for independently growing plants, 

 

 var(Total yield) = var(Y1 + … + Yn) = n σ2
 

and hence 

 var(Mean yield) = var( )y  = σ2
 / n 

 

Now put that in the context of this spacing experiment. The plot area is 0.01 Morgen which is 

about 86 m
2
. Spacings are about 10, 20, 30 cm. The number of rows of varying shapes 

depends on the shape of the plot. We’ll assume for illustration that we have multiples of 1.2m 

areas for rows. The 12” spacing is equivalent to 30cm row spacing, so 4 rows are used at that 

spacing, 6 rows at 20cm spacing and 12 rows at 10cm spacing. 
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Plots like these (with row spacings 12”, 8”, 4”) consist of varying numbers of plants (in the 

ratio 4:6:12). Other combinations are possible. The point is, total yield (or mean yield) 

obtained from plots with varying numbers of plants will have changing variance if the plants 

grow independently. 

 

With plant competition, the variance of total yield could well even out across all shaped plots. 

Plant competition means that the yields become spatially correlated. We will ignore this 

problem for the moment. Changing variance and correlated yield models are available in 

Linear Mixed Models (REML). 

 

Example 9 Yields (pounds) of cowpea hay from Snedecor and Cochran, page 309. 

 

Variety Spacing Block 1 Block 2 Block 3 Block 4 

I 4 56 45 43 46 

 8 60 50 45 48 

 12 66 57 50 50 

II 4 65 61 60 63 

 8 60 58 56 60 

 12 53 53 48 55 

III 4 60 61 50 53 

 8 62 68 67 60 

 12 73 77 77 65 

 

There are two strata in this experiment, Block and Block.Plot. The Block Structure is therefore 

Block + Block.Plot, or simply Block/Plot. Since the smallest stratum can be omitted, Block is 

sufficient. 

 

 
 

The full analysis of the data, including L.S.D. values and stratum variances, is as follows. 
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Analysis of variance 

  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 3  255.64  85.21  4.82   
  
Block.*Units* stratum 
Variety 2  1027.39  513.69  29.07 <.001 
Spacing 2  155.06  77.53  4.39  0.024 
Variety.Spacing 4  765.44  191.36  10.83 <.001 
Residual 24  424.11  17.67     
  
Total 35  2627.64       
 

Tables of means 

  
Variate: Yield 
  
Grand mean  57.81  
  
 Variety  1  2  3 
   51.33  57.67  64.42 
  
 Spacing  4.  8.  12. 
   55.25  57.83  60.33 
  
 Variety Spacing  4.  8.  12. 
  1   47.50  50.75  55.75 
  2   62.25  58.50  52.25 
  3   56.00  64.25  73.00 
 

Standard errors of differences of means 

Table Variety Spacing Variety   
   Spacing   
rep.  12  12  4   
d.f.  24  24  24   
s.e.d.  1.716  1.716  2.972   
  

Least significant differences of means (5% level) 

Table Variety Spacing Variety   
   Spacing   
rep.  12  12  4   
d.f.  24  24  24   
l.s.d.  3.542  3.542  6.135   
 

Estimated stratum variances 

Variate: Yield 
  
Stratum variance  effective d.f.   variance component  
Block  85.213  3.000  7.505 
Block.*Units*  17.671  24.000  17.671 

 

There is strong statistical evidence (P<0.001) that the change in mean yield at different row 

spacings is not the same for all three varieties. A means plot illuminates the differences: 
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There is a strong linear trend in mean yield, 

but the means for variety 2 decrease with 

increasing spacing. Varieties 1 and 3 must 

have heavy vegetative growth that requires 

at least 12” to approach optimal yield. 

These linear trends can be incorporated into the ANOVA, using the Contrast button on the 

ANOVA table. 

 

Using the Contrast Matrix 

Firstly, for the factor Spacing we are interested in a linear trend: this is a situation where POL 

(polynomial regression/contrast) can be used. 

 

 

Click on the Contrast button, 

select the Spacing factor and 

nominate Polynomial. The 

degree of the polynomial you 

wish to fit is the Number of 

Contrasts. In this case leave 

this as 1 and click OK. 

GenStat replaces Spacing in 

the treatment structure with 

POL(Spacing;1). 

 

 

 

We are also interested in sub-hypotheses for the Variety factor. In this case, two are more 

natural than other choices: 

 

 H0: Variety 1 and Variety 3 means are equal: we wish to assess µ3-µ1. 

 

 H0: Variety 2 mean and the average mean of Variety 1 and Variety 3 are equal: we wish 

to assess (µ3+µ1)/2-µ2. 
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Contrasts are simply the coefficients of the means in the questions asked. For any contrast, 

the coefficients will add to zero. GenStat allows two types of questions, labelled 

Comparisons and Regression. 

 

Comparisons allows any number of questions to be asked, with no restrictions on the 

questions asked. Their component sums of squares will not add to the Variety SS. 

 

For t treatments, Regression allows up to (t-1) questions, with restrictions on the questions 

asked. The questions must be orthogonal, that is, balanced in a special way. The component 

sums of squares for all (t-1) contrasts will add to the Treatment SS. Even if the contrasts are 

orthogonal, the Comparisons choice can be used. The only difference is that GenStat does not 

report deviations when Comparisons is selected. 

 

 Variety 1 vs 3: µ3-µ1 is equivalent to (-1, 0 ,1) multipliers of (µ1, µ2, µ3) respectively 

 

 Variety 1&3 vs 2: (µ3+µ1)/2-µ2 is equivalent to (½, -1, ½) multipliers of (µ1, µ2, µ3). It is 

preferable to enter integers rather than fractions, so multiplier by a constant (in this case 

2) to remove fractions. The contrast is then (1, -2, 1) 

 

Click on the Contrast button, select the Variety factor and nominate Regression and enter the 

Number of Contrasts you wish to make (here 2). GenStat opens up a table (which is names, 

by default, Cont, or Cont_1 if Cont exists) with (here) 2 rows (questions) and 3 columns 

(levels). Names of the levels are placed above the columns. Enter the contrast coefficients, 

and double click on the grey areas of the rows, where the names of each contrast can be set 

up. Then return to the ANOVA Contrasts menu and click OK. GenStat replaces Variety in the 

treatment structure with REG(Variety;2;Cont) or COMP(Variety;2;Cont) if you chose 

Comparisons. 

 

 
 

The new ANOVA table is as follows. 
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Analysis of variance 

  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 3  255.64  85.21  4.82   
  
Block.*Units* stratum 
Variety 2  1027.39  513.69  29.07 <.001 
  Var 1 vs 3 1  1027.04  1027.04  58.12 <.001 
  Var 1,3 vs 2 1  0.35  0.35  0.02  0.890 
Spacing 2  155.06  77.53  4.39  0.024 
  Lin 1  155.04  155.04  8.77  0.007 
  Deviations 1  0.01  0.01  0.00  0.978 
Variety.Spacing 4  765.44  191.36  10.83 <.001 
  Var 1 vs 3.Lin 1  76.56  76.56  4.33  0.048 
  Var 1,3 vs 2.Lin 1  682.52  682.52  38.62 <.001 
  Var 1 vs 3.Dev 1  0.52  0.52  0.03  0.865 
  Var 1,3 vs 2. Dev 1  5.84  5.84  0.33  0.571 
Residual 24  424.11  17.67     
  
Total 35  2627.64       

  

Note that with 3 spacing levels, Dev is identical to the quadratic term. With 4 spacing levels 

and a linear model requested, Dev will be the combined quadratic and cubic components: it’s 

what is left after the requested polynomial is fitted. This table adds the following to what we 

knew already. The slope in the regression of the means of varieties 1 and 3 are marginally 

different (P=0.048), whereas the slope for variety 2 in comparison is strikingly different 

(P<0.001) to an average slope for variety 1 and 3 means. 

 

Here are trend lines added in Excel: 

 

 

y = 1.0313x + 43.083

y = -1.25x + 67.667
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40

45

50

55

60

65

70

75

0 4 8 12

M
e

a
n

 y
ie

ld

Spacing (inches)

Variety 1

Variety 2

Variety 3



 Statistical Advisory & Training Service Pty Ltd 

60 

 

 

If we just wish to estimate the fitted regressions using GenStat, it is easier to use a general 

regression ignoring blocks (because the design is orthogonal). The factor column Spacing 

needs to be converted to a variate instead (simply point to the column, right click and select 

Convert to Variate). The Model to be fitted is Variety*Spacing. We are using this model simply 

to obtain the linear equations, not to test hypotheses. 

 

Estimates of parameters 

  
Parameter estimate s.e. t(30) t pr. 
Constant  43.08  3.65  11.80 <.001 
Spacing  1.031  0.423  2.44  0.021 
Variety 2  24.58  5.17  4.76 <.001 
Variety 3  4.33  5.17  0.84  0.408 
Spacing.Variety 2  -2.281  0.598  -3.82 <.001 
Spacing.Variety 3  1.094  0.598  1.83  0.077 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Variety   1 

 

The model for the reference Variety 1 comes out immediately:  

Mean yield = 43.08 + 1.031 Spacing 

 

For variety 2 we add 24.58 to the intercept and -2.281 to the slope: 

Mean yield = 67.66 - 1.250 Spacing 

 

For variety 3 we add 4.33 to the intercept and 1.094 to the slope: 

Mean yield = 47.41 + 2.125 Spacing 

 

 

LMM (REML) analysis 

 

The Treatment Structure is Spacing*Variety and the Block Structure is Block/Plot. In the earlier 

discussion, there was consideration about whether the variance was constant, proportional to 

the number of plants in a plot, or somewhere in between. We explore these issues using 

change in deviance. 

 

The estimates of the stratum variances were: 

Estimated stratum variances 

Stratum variance  effective d.f.   variance component  
Block  85.213  3.000  7.505 
Block.*Units*  17.671  24.000  17.671 

 

In order to allow a changing variance model for different spacings, we need to ensure that 

Spacing appears in the Block Structure so we can use Correlated Error Terms. We can change 

Block/Plot for an expression in which the Plot part is replaced by a factor expression which 

ranges over the same set of values. Plot goes from 1 to 9 in each block. These track which 

combination of variety and spacing is used in each plot. Hence an equivalent expression for 

the Block Structure is Block.Spacing.Variety. The deviances for common variance (Identity) and 

variances changing over Spacing levels (Diagonal) are as follows: 
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 deviance d.f. Change in deviance Change in d.f. P value 

Identity 121.74 25    

Diagonal 120.37 23 1.37 2 0.504 

 

For this experiment, there is no evidence that a changing variance model is necessary 

(P=0.504). The rest of the analysis gives the same variance estimates and equivalent test 

values as for ANOVA. 

 

REML variance components analysis 

Response variate: Yield 
Fixed model: Constant + Variety + Spacing + Variety.Spacing 
Random model: Block + Block.Variety.Spacing 
Number of units: 36 
  
Block.Variety.Spacing used as residual term 
  

Estimated variance components 

Random term component s.e. 
Block  7.50  7.75 
 

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
 Block.Variety.Spacing Identity Sigma2 17.67  5.10 
 

Wald tests for fixed effects 

Fixed term Wald statistic d.f. Wald/d.f. chi pr 
Variety 58.14 2 29.07 <0.001 
Spacing 8.77 2 4.39  0.012 
Variety.Spacing 43.32 4 10.83 <0.001 

  

Using contrasts in REML 

 

We will do this directly by replacing the two factors with variates that represent the contrasts 

and trends.  

 

For Variety contrasts, click in the Variety column and use Spread > Factor > Recode. We need 

a variate and hence untick Create as a Factor and tick Recode to Numeric. Use the same 

contrasts as for ANOVA: 
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For Spacing trends, click in the Spacing column and use Spread > Factor > Recode. There are 

spacing levels already defined, so simply untick Create as a Factor and name the new column 

S (say). Repeat and use squared spacing levels for a column named S2 (say) representing the 

quadratic trend. 

 
 

Here we are not using orthogonal polynomials for Spacing, and so we need to examine the 

Wald statistics sequentially – i.e. we ignore the P Wald statistics in Dropping individual terms 

from full fixed model. Each factor in the fixed model Variety*Spacing is replaced by the two 

variate contrasts/polynomials, so (Var1_3+Var1_3_2)*(S+S2): 

 

 
 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Var1_3 + Var1_3_2 + S + S2 + Var1_3.S + Var1_3_2.S + 
Var1_3.S2 + Var1_3_2.S2 
Random model: Block 
Number of units: 36 
  
Residual term has been added to model 
  
Sparse algorithm with AI optimisation 
All covariates centred 
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Estimated variance components 

Random term component s.e. 
Block  7.50  7.75 
  

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
Residual  Identity Sigma2 17.67  5.10 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  161.60  25 
   

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Var1_3 58.12 1 58.12 24.0  <0.001 
Var1_3_2 0.02 1 0.02 24.0  0.890 
S 8.77 1 8.77 24.0  0.007 
S2 0.00 1 0.00 24.0  0.978 
Var1_3.S 4.33 1 4.33 24.0  0.048 
Var1_3_2.S 38.62 1 38.62 24.0  <0.001 
Var1_3.S2 0.03 1 0.03 24.0  0.865 
Var1_3_2.S2 0.33 1 0.33 24.0  0.571 

 

 These P values are the same as those in the ANOVA. 

 

Illustration that assuming blocks are random does not affect the test of fixed treatments 

 

The tests of fixed effects from a REML analysis with Block a random component are: 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Variety 58.14 2 29.07 24.0 <0.001 
Spacing 8.77 2 4.39 24.0  0.024 
Variety.Spacing 43.32 4 10.83 24.0 <0.001 

 

With Block a fixed component we obtain: 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Block 14.47 3 4.82 24.0  0.009 
Variety 58.14 2 29.07 24.0 <0.001 
Spacing 8.77 2 4.39 24.0  0.024 
Variety.Spacing 43.32 4 10.83 24.0 <0.001 

 

F statistics and P values for the two main effects and the interaction are unchanged. In the 

second analysis there is an additional test of the fixed block effects. For the first analysis 

there is a variance component instead for the random block term.  

 

The means are also unchanged. However, the standard errors of individual means will be 

larger for the random block model, since the treatment means all involve an additional 

random block term. Standard errors of differences, however, are unchanged, since this block 

term cancels out in the difference (assuming a balanced design). Hence decisions based on 

comparing means are also unaffected by the assumption about blocks.  
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For example, the standard error of a varietal mean is 1.214 when blocks are assumed fixed, 

but 1.830 when they are random; the standard error of a difference is 1.716 in both cases. 

 

Illustration that assuming blocks are random is equivalent to a uniform correlated error 

structure 

 

Take any two plots (say plot j and plot k) in block i. The simple RCBD model with fixed 

treatments implies 

 

Yij = mean + Blocki + Treatmentj + Errorij  

and 

Yik = mean + Blocki + Treatmentk + Errorik 

 

Since Blocki ~ ( )20
Block

N ,σ  independently of Errorij ~ ( )20N ,σ  we obtain 

 

( ) ( ) 2 2

ij ik Block
var Y var Y= = σ + σ  

and 

( ) 2

ij ik Block
covar Y ,Y = σ  

 

giving the following correlation between the two plots: 

 

( )
2

2 2

Block

ij ik

Block

co rr Y ,Y
σ

= = θ
σ + σ

 say. 

 

The estimated stratum variances from the ANOVA are 2

Blockσ̂  = 7.505 and 2σ̂  = 17.671. This 

implies that the yields in any two plots in each block are uniformly correlated, the estimated 

correlation being 7.505/(7.505+17.671) 0.298.  

 

When you wish to use a correlated error structure in LMM (REML) you need to drop Block 

from the Random Model, and use just Block.Plot, since the correlation model supercedes the 

two random components model. (This is more fully described on page 656 in GenStat’s 

Statistics Guide via the Help screen.) 

 

Unfortunately, Uniform is not currently listed in the menu’s available Correlated Error Terms, 

but it is an option in the actual procedure. The way around this is to run a different correlation 

structure, copy the appropriate lines of code to a new Input Window, modify the line and re-

run the window of code. Here we chose AR1: 

 

Copy from GenStat’s Input window: 
VCOMPONENTS [FIXED=Block+Variety*Spacing; FACTORIAL=9; CADJUST=none] 

RANDOM=Block.Plot; INITIAL=1; CONSTRAINTS=none 

VSTRUCTURE [TERMS=Block.Plot; FORMATION=direct] MODEL=identity,ar1; 

ORDER=*,1; FACTOR=Block,Plot 

REML [PRINT=model,components,deviance,waldTests; PSE=differences; 

MVINCLUDE=*; METHOD=AI; MAXCYCLE=20] Yield 

 

 

 

Change to uniform, then use Run > Submit Window to 

re-run the analysis with a uniform correlation structure 
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To illustrate this, we need to supply an error term that indexes over the 4 blocks and 9 plots in 

each block. We will first add a factor column Plot with 9 levels (corresponding to the 3 

varieties × 3 spacings used in each block). We then select an AR1 correlated error term from 

the menu, copy the input, change AR to uniform and rerun the analysis. 

 

 
 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Variety + Spacing + Variety.Spacing 
Random model: Block.Plot 
Number of units: 36 
  
Block.Plot used as residual term with covariance structure as below 
 

Covariance structures defined for random model 
Term Factor Model Order No. rows 
Block.Plot Block Identity 1 4 
 Plot Uniform 1 9 
  

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
  Block.Plot Sigma2 25.18  8.96 
 
 Block Identity -         - - 
 Plot Uniform theta1  0.2981  0.2286 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  121.74  25 
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Variety 58.14 2 29.07 24.0 <0.001 
Spacing 8.77 2 4.39 24.0  0.024 
Variety.Spacing 43.32 4 10.83 24.0 <0.001 

 

These F statistics and P values are identical to when 

we had a random model Block + Block.Plot, and are 

identical to those from the ANOVA. 
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There is no random block term in the model, but the presence of a uniform correlation 

structure within blocks implies such a term. We can work the formula for the uniform 

correlation backwards to calculate the block variance component: 

 

The estimate 25.18 is actually the combined estimate ( 2

Blockσ̂ + 2σ̂ ). The uniform correlation is 

0.2981 = 2

Blockσ̂ /( 2

Blockσ̂ + 2σ̂ ) = 2

Blockσ̂ /25.18, so that 2

Blockσ̂  = 0.2981×25.18 = 7.506 (as was 

obtained earlier). 

 

In field trials, it is unlikely that a uniform correlation applies spatially or temporally. It is 

more likely that plots closer together (in time or space) are more strongly correlated than 

plots further apart. Hence, AR models are commonly used in the modern analyses of field 

trials. The example above does not have a known field plan, so we illustrate this with the 

eelworm data later on. 

 

GenStat’s examples in their on-line Statistics guide go even further. Once you start imposing 

complex correlation structures on the spatial design, there remains the possibility of including 

other sources of variation (measurement error, sampling error etc). Again, we will illustrate 

this with the eelworm data. 
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Three-way design (in randomized blocks) – missing values 

 

Consider the following factorial treatment structure with two varieties, V, (labelled A, B), 

two levels of witchweed, W, (infested, I, or not infested, U) and 4 fertilisers, F, (0 = none,  

1 = super only, 2 = super + manure and 4 = super + N + K). Two randomized blocks were 

used. The yields, Y, and the field plan are as follows: 

 

Example 10 Maize RCBD experiment with 2 varieties × 2 witchweed infestations × 4 

fertilisers, from SC Pearce, P132. 

 

Block V W F Y V W F Y V W F Y V W F Y 

1 

B I F3 13.5 B U F1 12.8 A I F3 15.8 B I F4 11.6 

A I F1 10.4 B U F4 17.1 A I F2 12.5 A U F1 14.8 

B I F2 11.8 B U F2 16.9 B I F1 9.5 A I F4 11.3 

B U F3 22.3 A U F3 24.9 A U F4 19.9 A U F2 19.7 

2 

B U F2 16.0 A I F1 10.0 B I F2 9.5 A U F4 19.2 

A U F2 18.0 B U F1 13.0 B I F1 9.6 A U F3 22.0 

B I F3 13.4 A I F4 11.4 B U F4 16.6 B U F3 20.0 

A I F2 10.1 B I F4 9.2 A U F1 14.0 A I F3 13.6 

 

This is a straightforward 3-way factorial treatment design. Ignoring any potential problems 

with the assumptions, the ANOVA is as follows: 

 

Analysis of variance 

  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 1  11.5200  11.5200  19.61   
  
Block.*Units* stratum 
Variety 1  19.2200  19.2200  32.72 <.001 
Fertiliser 3  167.7450  55.9150  95.20 <.001 
Witchweed 1  338.0000  338.0000  575.48 <.001 
Variety.Fertiliser 3  0.7050  0.2350  0.40  0.755 
Variety.Witchweed 1  3.6450  3.6450  6.21  0.025 
Fertiliser.Witchweed 3  22.2250  7.4083  12.61 <.001 
Variety.Fertiliser.Witchweed 3   0.3300  0.1100  0.19  0.903 
Residual 15  8.8100  0.5873     
  
Total 31  572.2000  

 

As usual with factorial experiments, interpret highest-order interactions downwards. If the 3-

factor interaction is significant, that means that the pattern in a 2-way table of means differs 

across the levels of the third factor. For example, had Variety.Fertiliser.Witchweed been 

significant, we would conclude that for plots infested with witchweed, the change in response 

to the four fertilisers for varieties A and B is different to plots not infested with witchweed. 

 

In this case, the 3-factor interaction is not significant so we can turn our attention to 2-factor 

interactions. Since the design is balanced, the order of the three 2-way interactions is 
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irrelevant. Below are the P values for a different order (Variety, Witchweed, Fertiliser). You 

can see that the variance ratios and P values for the three 2-way interactions are unchanged: 

 

Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 1  11.5200  11.5200  19.61   
  
Block.*Units* stratum 
Variety 1  19.2200  19.2200  32.72 <.001 
Witchweed 1  338.0000  338.0000  575.48 <.001 
Fertiliser 3  167.7450  55.9150  95.20 <.001 
Variety.Witchweed 1  3.6450  3.6450  6.21  0.025 
Variety.Fertiliser 3  0.7050  0.2350  0.40  0.755 
Witchweed.Fertiliser 3  22.2250  7.4083  12.61 <.001 
Variety.Witchweed.Fertiliser 3   0.3300  0.1100  0.19  0.903 
Residual 15  8.8100  0.5873     

 

Now suppose that the bottom right hand corner plot was damaged due to rain. The plot yield, 

13.6, is missing. The treatment involved was in a lower yielding block (block 2), the higher 

yielding variety A, the highest yielding fertiliser regime and the plot was infested with 

witchweed resulting in much lower yields. 

 

We saw with example 1 that using a missing value code in ANOVA had a completely 

different outcome than omitting the row completely. With an * in lieu of a data value, a 

missing value formula is used to replace the yield, resulting in an apparent balanced data set 

(albeit with an adjustment to the residual degrees of freedom). While that may be 

approximately OK (treatment F values are somewhat inflated) it could become misleading. 

Omitting the entire row and using the unbalanced treatment structure ANOVA produces just 

one possible order of the factors and interactions. 

 

In an unbalanced design, it is important to look at the P values for an interaction (or main 

effect) adjusted for all other interactions (or main effects) of the same order. 

 

Occasionally the numbers of replicates in the treatment combinations may be unbalanced 

simply because of the design limitations. For example, an animal trial may involve brred and 

sex, and an equal number of male, female and neuter horses may not be available for all 

breeds of horses. Or in a sample survey an unequal number of males and females are 

canvassed across another category such as profession. ANOVA will not work for such 

unbalanced treatment structures. Suppose we omit the final row of the current data set and re-

run the ANOVA. You will see the following error message: 

 

Fault 8, code AN 1, statement 1 on line 411 
  
Command: ANOVA [PRINT=aovtable,information,means,stratumvariance; FACT=32; CONTR 
Design unbalanced - cannot be analysed by ANOVA. 
Model term Fertiliser (non-orthogonal to term Block) is unbalanced.  

 

Switching to unbalanced treatment structure ANOVA gives P values for the order of the 

factors and interactions in the fixed model: 
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Analysis of an unbalanced design using GenStat regression 

 

Accumulated analysis of variance 

Change d.f. s.s. m.s. v.r. F pr. 
+ Block  1  10.5376  10.5376  17.82 <.001 
+ Variety  1  20.7471  20.7471  35.09 <.001 
+ Fertiliser  3  193.8668  64.6223  109.31 <.001 
+ Witchweed  1  313.0126  313.0126  529.46 <.001 
+ Variety.Fertiliser  3  1.6177  0.5392  0.91  0.460 
+ Variety.Witchweed  1  2.3300  2.3300  3.94  0.067 
+ Fertiliser.Witchweed  3  20.0202  6.6734  11.29 <.001 
+ Variety.Fertiliser.Witchweed 3  0.5422  0.1807  0.31  0.821 
Residual  14  8.2767  0.5912     
Total  30  570.9510  19.0317    

 

whereas putting Variety last gives: 

 

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Block  1  10.5376  10.5376  17.82 <.001 
+ Fertiliser  3  186.3230  62.1077  105.06 <.001 
+ Witchweed  1  319.8248  319.8248  540.98 <.001 
+ Variety  1  21.4788  21.4788  36.33 <.001 
+ Fertiliser.Witchweed  3  19.9113  6.6371  11.23 <.001 
+ Fertiliser.Variety  3  1.0697  0.3566  0.60  0.624 
+ Witchweed.Variety  1  2.9869  2.9869  5.05  0.041 
+ Fertiliser.Witchweed.Variety 3  0.5422  0.1807  0.31  0.821 
Residual  14  8.2767  0.5912     
Total  30  570.9510  19.0317     

 

You can see the dilemma: do we trust the 0.041 P value for Variety.Witchweed, or the 0.067 P 

value? The answer is we should use the P value for Variety.Witchweed when it is the last 2-

factor interaction entered in the model. The reason is that we need to adjust for the 

behaviour of maize across all four fertiliser regimes and both varieties before we can decide 

whether the response to infestation of witchweed is the same for the two varieties. 

 

So, since all 2-factor interactions need to be entered last, that means we need to run at least 

three different unbalanced treatment structure ANOVAs. 

 

Before looking at how REML handles this, we note the following. Since the 3-factor 

interaction is not significant, the corresponding Mean Square must be statistically similar to 

the Residual Mean Square (for the variance ratio to be not significantly larger than 1). We 

can therefore omit the three-factor interaction from the treatment structure. The repercussion 

is to move this interaction into the residual term, thus increasing the precision of the estimate 

of variance and increasing the power of the remaining tests. 

 

To remove the three-factor interaction, either use the GenStat shortcut A*B*C-A.B.C, or else 

simply enumerate the remaining model: A+B+C+A.B+A.C+B.C (or A*B+A*C+B*C since 

repeated terms in the expansion of this model are simply ignored). We will do this in the next 

section. 
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LMM (REML) analysis 

 

Remember that REML uses only the data present and hence it makes no difference whether 

an * is used or the row deleted entirely. 

 

The Fixed Model is Variety*Witchweed*Fertiliser and the Random Model Block as with 

ANOVA: 

 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Variety + Fertiliser + Witchweed + Variety.Fertiliser + 
Variety.Witchweed + Fertiliser.Witchweed + Variety.Fertiliser.Witchweed 
Random model: Block 
Number of units: 31 (1 units excluded due to zero weights or missing values) 
  
Residual term has been added to model 
  
Sparse algorithm with AI optimisation 
  
  

Estimated variance components 

Random term component s.e. 
Block  0.6028  0.9084 
 

Residual variance model 
Term FactorModel(order) Parameter Estimate s.e. 
Residual  Identity Sigma2 0.591  0.2234 
  

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
 Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Variety 35.19 1 35.19 14.0  <0.001 
Fertiliser 328.35 3 109.45 14.0  <0.001 
Witchweed 529.10 1 529.10 14.0  <0.001 
Variety.Fertiliser 2.78 3 0.93 14.0  0.453 
Variety.Witchweed 3.90 1 3.90 14.0  0.068 
Fertiliser.Witchweed 33.73 3 11.24 14.0  <0.001 
Variety.Fertiliser.Witchweed  0.95 3 0.32 14.0  0.813 
  
Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Variety.Witchweed.Fertiliser 0.95 3 0.32 14.0  0.813 

 

Notice 

 

 GenStat has two sections of tests of fixed effects. The Sequentially adding terms to fixed 

model section is equivalent to the order produced by the unbalanced treatment structure 

ANOVA, except that with the latter a Block term is included, thereby affecting slightly 

the subsequent F values. 

 

The Dropping individual terms from full fixed model section is what should be used with 
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unbalanced data, since this is where the Wald statistics are placed for each term adjusted 

for all other terms of the same order. 

 

 In this case, the 3-factor interaction can dropped (P=0.813). When we actually drop this 

from the model and re-run the analysis with: 

Fixed Model: Variety*Fertiliser*Witchweed-Variety.Fertiliser.Witchweed 

we obtain: 

 

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Variety 40.09 1 40.09 17.0  <0.001 
Fertiliser 374.12 3 124.71 17.0  <0.001 
Witchweed 603.03 1 603.03 17.0  <0.001 
Variety.Fertiliser 3.16 3 1.05 17.0  0.394 
Variety.Witchweed 4.45 1 4.45 17.0  0.050 
Fertiliser.Witchweed 38.47 3 12.82 17.0  <0.001 
  
Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Variety.Fertiliser 1.72 3 0.57 17.0  0.640 
Variety.Witchweed 5.70 1 5.70 17.0  0.029 
Fertiliser.Witchweed 38.47 3 12.82 17.0  <0.001 

 

The P values for each of the 2-factor interactions is obtained adjusted for the other 2-factor 

interactions, so it is as if GenStat is running three models for us. Had these interactions all 

been not significant we could drop them from the model, leaving main effects only; the Wald 

statistics in the Dropping individual terms from full fixed model section are all adjusted. 

 

Any significant interaction that needs to be included in a model should have the main effects 

and lower-order interactions included as well. 

 

Thus, we conclude that the final model for this example involves three main effects (variety, 

fertliser and witchweed) and two significant interactions Variety.Witchweed (P=0.029) and 

Fertliser.Witchweed (P<0.001).  

 

Table of predicted means for Variety.Witchweed 

  
 Witchweed I U 
 Variety   
 A 11.95 19.06 
 B 11.01 16.84 
 

Table of predicted means for Witchweed.Fertiliser 

  
 Fertiliser F1 F2 F3 F4 
 Witchweed   
 I 9.88 10.97 14.20 10.87 
 U 13.65 17.65 22.30 18.20 

 

See Appendix 6 for an example showing the reliability of REML means for missing values. 

The yield for Variety A is relatively 

lower than Variety B in plots infested 

with witchweed than uninfested. 
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Three-way design (in randomized blocks) – changing variance 

 

McConway et al. (1999) reported the results of an experiment which had a randomised block 

design, in more or less the following words. There were 64 plots, arranged in four blocks 

each of size sixteen. Each block was a rectangular piece of land, measuring 3m ×  32m. Each 

block was divided into sixteen plots by splitting the long side of the block into sixteen 2m 

pieces. So, each plot was a 3m×  2m rectangle of land. The River Thames runs along one 

edge of the field used in this experiment, and usually floods part of the field each year. The 

blocks were designed so that the long side of each block was parallel to the river-bank. The 

blocks were different distances from the river-bank. 

 

The experiment was about growing turnips for fodder. The turnips would not normally be 

harvested because they are grown to provide food for farm animals in winter; the farmer 

simply releases animals into the field and the animals graze on the turnips. The turnips are 

not even the main crop in the field during the growing season; the turnips are sown after the 

main crop is removed. 

 

There were sixteen treatments in this experiment. The combinations are formed from: two 

different varieties – Barkant or Marco; two different sowing dates – one as soon as possible 

after the main crop has been harvested, the other a week later; and four different sowing 

densities – 1, 2, 4 or 8 kg ha
-1

. Treatment combinations were allocated to plots within blocks 

at random.  

 

Example 11 Yield of turnips (kg), from McConway et al. (1999) 

variety 
sowing 

date 

sowing 

density 

(kg ha
-1

) 

Block 1 Block 2 Block 3 Block 4 

Barkant 

21/08/1990 

1 2.7 1.4 1.2 3.8 

2 7.3 3.8 3.0 1.2 

4 6.5 4.6 4.7 0.8 

8 8.2 4.0 6.0 2.5 

28/08/1990 

1 4.4 0.4 6.5 3.1 

2 2.6 7.1 7.0 3.2 

4 24.0 14.9 14.6 2.6 

8 12.2 18.9 15.6 9.9 

Marco 

21/08/1990 

1 1.2 1.3 1.5 1.0 

2 2.2 2.0 2.1 2.5 

4 2.2 6.2 5.7 0.6 

8 4.0 2.8 10.8 3.1 

28/08/1990 

1 2.5 1.6 1.3 0.3 

2 5.5 1.2 2.0 0.9 

4 4.7 13.2 9.0 2.9 

8 14.9 13.3 9.3 3.6 

 

Again, this is a density trial, and hence the variance may change over different planting 

densities.  

 

The plants are also grown for two different time periods. It is almost always the case that the 

variance of plant yield increases over time. The following is an example of this. 
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An experiment was conducted by a former student at The University of Sydney (Jason 

Moodie) on lettuce growth for the first 30 days after transplanting seedlings. Dry weights, 

fresh weights and leaf areas were measured every day or every second day. It is clear that the 

variance increases over time. 

 

 
A second example is calf weight for the first nineteen weeks after birth which we consider 

again later: 

 

 
 

Again, the variance appears to increase as the calves grow. The means and variances over 

time for these thirty calves are as follows. 
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Week 0 2 4 6 8 10 12 14 16 18 19 

Mean226.20230.33246.87265.63281.17294.87304.73 312.87 315.13 324.07 325.47 

Variance105.54155.13165.22184.86242.97283.77306.55 340.67 389.15 470.06 444.60 

 

The points are 

 we should expect the variance to change when plants are grown for different lengths of 

time 

 we should expect the variance to change with density (it may not, depending on the extent 

of plant competition). 

 

Firstly, here is the standard ANOVA assuming constant variance: 

 

Analysis of variance 

Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 3  163.737  54.579  5.69   
  
Block.*Units* stratum 
Density 3  470.378  156.793  16.35 <.001 
Sowing 1  233.708  233.708  24.37 <.001 
Variety 1  83.951  83.951  8.75  0.005 
Density.Sowing 3  154.793  51.598  5.38  0.003 
Density.Variety 3  8.647  2.882  0.30  0.825 
Sowing.Variety 1  36.451  36.451  3.80  0.057 
Density.Sowing.Variety 3  17.999  6.000  0.63  0.602 
Residual 45  431.611  9.591     
  
Total 63  1601.275  
 

Tables of means 

  
Variate: Yield 
  
Grand mean  5.38  
  
 Density  1  2  4  8 
   2.14  3.35  7.33  8.69 
  
 Sowing  21-Aug-90  28-Aug-90 
   3.47  7.29 
  
 Variety  Barkant  Marco 
   6.52  4.23 
  
 Density Sowing  21-Aug-90  28-Aug-90 
  1   1.76  2.51 
  2   3.01  3.69 
  4   3.91  10.74 
  8   5.18  12.21 
  
 Density Variety  Barkant  Marco 
  1   2.94  1.34 
  2   4.40  2.30 
  4   9.09  5.56 
  8   9.66  7.73 
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 Sowing Variety  Barkant  Marco 
  21-Aug-90   3.86  3.08 
  28-Aug-90   9.19  5.39 
  
  Sowing  21-Aug-90   28-Aug-90  
 Density Variety  Barkant  Marco  Barkant  Marco 
  1   2.28  1.25  3.60  1.43 
  2   3.83  2.20  4.98  2.40 
  4   4.15  3.68  14.03  7.45 
  8   5.18  5.18  14.15  10.28 
  
  

Standard errors of differences of means 

  
Table Density Sowing Variety Density   
    Sowing   
rep.  16  32  32  8   
d.f.  45  45  45  45   
s.e.d.  1.095  0.774  0.774  1.548   
  
Table Density Sowing Density     
 Variety Variety Sowing     
   Variety     
rep.  8  16  4     
d.f.  45  45  45     
s.e.d.  1.548  1.095  2.190     

 

Estimated stratum variances 

Stratum variance  effective d.f.   variance component  
Block  54.579  3.000  2.812 
Block.*Units*  9.591  45.000  9.591 

 

LMM (REML) analysis 

 

For this experiment, the Fixed Model is Variety*Date*Density and the Random Model is 

Block/Plot. As before, plots are completely described by the combination of 

Variety*Date*Density, leading to Block+ Block.Variety*Date*Density as the Random Model. That 

allows use to investigate Diagonal structures for Date and/or Density. 

 

 Change in: 

Block Variety Sowing date Density deviance d.f. deviance d.f. P value

Identity Identity Diagonal Diagonal 162.05 42   

Identity Identity Identity Diagonal 168.10 43 6.05 1 0.014

  

Identity Identity Diagonal Diagonal 162.05 42   

Identity Identity Diagonal Identity 175.71 45 13.66 3 0.003

  

Identity Identity Identity Identity 183.92 46  

 

If we start assuming that the variance changes over time as well as over densities, we can then 

test whether an adequate model has only a changing variance over densities (P = 0.014), or a 
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changing variance over time (P = 0.003). We clearly should allow the variance to change 

over both factors. 

 

REML variance components analysis 

  
Response variate: weight 
Fixed model: Constant + density + sowing + variety + density.sowing + density.variety + 
sowing.variety + density.sowing.variety 
Random model: block + block.density.sowing.variety 
Number of units: 64 
  
block.density.sowing.variety used as residual term with covariance structure as below 
  

Covariance structures defined for random model 
Term Factor Model Order No. rows 
block.density.sowing.variety  
 block Identity 0 4 
 density Diagonal 4 4 
 sowing Diagonal 2 2 
 variety Identity 0 2 
 

Estimated variance components 

Random term component s.e. 
block  0.160  0.328 

  

Output using PARAMETERIZATION=sigmas 

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
block.density.sowing.variety Sigma2 1.000 fixed 
 
 block Identity -         - - 
 density Diagonal d_1  1.000 fixed 
     d_2  2.195  1.358 
     d_3  10.48  6.35 
     d_4  7.682  4.661 
 sowing Diagonal d_1  1.030  0.507 
     d_2  3.143  1.481 
 variety Identity -         - - 
 

Estimated covariance models 

  
Variance of data estimated in form:  
  
V(y) = sZZ' + Sigma2.R 
  
where: V(y) is variance matrix of data 
       s is the variance component for the random term 
       Z is the incidence matrix for the random term 
       Sigma2 is the residual variance 
       R is the residual covariance matrix 
  
Random Term: block 
Scalar s: 0.1604  
  
Residual term: block.density.sowing.variety 
Sigma2: 1.000  
 R uses direct product construction 

To assist in understanding this output, we 

turned on the option Covariance Model. GenStat 

has scaled σ2
 to 1. The information on variance 

estimates is then obtained in the diagonal 

covariance matrices of the factors making up 

the residual term. To take one block and one 

variety, the variance of Y is obtained by 

evaluating the direct product of the two 

diagonal covariance matrices: 

 

1 000 0 0 0

0 2 195 0 0 1 030 0

0 0 10 48 0 0 3 143

0 0 0 7 682
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The matrix in the text book is a direct product of a 4×4 and a 2×2, giving an 8×8 matrix with 

elements obtained by element-by-element multiplication of the separate matrices: 

 

1.000×1.030 0 0 0 0 0 0 0 

0 1.000×3.143 0 0 0 0 0 0 

0 0 2.195×1.030 0 0 0 0 0 

0 0 0 2.195×3.143 0 0 0 0 

0 0 0 0 10.48×1.030 0 0 0 

0 0 0 0 0 10.48×3.143 0 0 

0 0 0 0 0 0 7.682×1.030 0 

0 0 0 0 0 0 0 7.682×3.143 

 

This calculates as: 

 

 Density 1 2 4 8 

Density Sowing date 21 28 21 28 21 28 21 28 

1 
21-Aug-90 1.030 0 0 0 0 0 0 0 

28-Aug-90 0 3.143 0 0 0 0 0 0 

2 
21-Aug-90 0 0 2.261 0 0 0 0 0 

28-Aug-90 0 0 0 6.899 0 0 0 0 

4 
21-Aug-90 0 0 0 0 10.794 0 0 0 

28-Aug-90 0 0 0 0 0 32.939 0 0 

8 
21-Aug-90 0 0 0 0 0 0 7.912 0 

28-Aug-90 0 0 0 0 0 0 0 24.145 

 

Thus, the variance of an observation for any block and variety, whose density is 1 kg ha
-1

 and 

sown on 21/08/1990 is estimated to be 0.1604 (= block variance) + 1.030 = 1.190. For a 

similar combination but sown a week later, it is 0.1604 + 3.143 = 3.301. 

 

The same variances are obtained using PARAMETERIZATION=gammas. GenStat estimates σ2
 to 

be 1.030 and scales the leading diagonal element of the covariance matrix for sowing date: 

 

 sowing Diagonal d_1  1.000 fixed 
     d_2  3.053  1.328 

 

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  162.05  42 
 

Wald tests for fixed effects 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Variety 9.35 1 9.35 22.2  0.006 
Density 38.47 3 12.09 18.9  <0.001 
Sowing 7.86 1 7.86 21.9  0.010 
Variety.Density 0.40 3 0.13 18.9  0.944 
Variety.Sowing 2.03 1 2.03 21.9  0.168 
Density.Sowing 14.50 3 4.56 18.8  0.015 
Variety.Density.Sowing 1.44 3 0.45 18.8  0.719 

  

Next we present just the two-way means for density and sowing for illustration. Since there 

are changing variances over the levels of some factors, we should turn on the option Standard 
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Errors All Differences so that individual differences can be compared or estimated with the 

correct precision. 

 

For example, to compare the two variety means at a density of 4 kg ha
-1

, we select treatments 

numbered 5 and 6 from the Standard errors of differences between pairs table for the in the 

output. We then read the value where the row marked  

 
density 4.sowing 28/8/90 6 

 

intersects with the column marked 5. The mean difference is 10.737-3.912 = 6.825 ± 2.338. 

Note from the Wald statistic that the df are 18.8, so for assessing the significance of this 

difference we would use 18.8 or 19 df. The t value is 6.825/2.338 = 2.92, and this is highly 

significant (P=0.009). The 95% confidence interval for the true varietal difference at 4 kg ha
-1

 

is (1.93, 11.72) kg ha
-1

. 

 

 
 

 

 
Table of predicted means for density.sowing 
sowing 21/8/90 28/8/90 
density   
1kg/Ha 1.763 2.512 
2kg/Ha 3.013 3.688 
4kg/Ha 3.912 10.737 
8kg/Ha 5.175 12.212 
  
Standard errors of differences between pairs 

density 1.sowing 21/8/90 1 *        

density 1.sowing 28/8/90 2 0.722 *       

density 2.sowing 21/8/90 3 0.641 0.822 *      

density 2.sowing 28/8/90 4 0.996 1.120 1.070 *     

density 4.sowing 21/8/90 5 1.216 1.320 1.277 1.487 *    

density 4.sowing 28/8/90 6 2.061 2.124 2.098 2.232 2.338 *   

density 8.sowing 21/8/90 7 1.057 1.175 1.127 1.361 1.529 2.260 *  

density 8.sowing 28/8/90 8 1.774 1.847 1.817 1.970 2.090 2.671 2.002 * 

  1 2 3 4 5 6 7 8 
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The ANOVA 

had a P value 

for 
Sowing.Variety 

of 0.057 and a 

constant s.e.d. 

of 1.548 for 

comparing 

two means 

and. Using 

this average-

type value 

leads to 

difficulty in 

comparing 

means with 

appropriate 

precision. 
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Latin Square design 
 

Occasionally we need to block in two directions in the field (especially in animal trials, where 

individual animals form one block, and the experiment is repeated over time, time forming a 

second block). 

 

For a Latin Square design, we need to have as many blocks in both directions as we have 

treatments. We then balance the allocation of treatments so that each occurs just once in each 

row and once in each column. 

 

Here is GenStat’s Design menu for generating a random 4×4 design: 

 

 
 

Treatment allocation for this random design: 

 Column block 

Row block 1 2 3 5 

1 4 1 3 2 

2 3 2 4 1 

3 2 3 1 4 

4 1 4 2 3 

 

We have marked a typical row block, a typical column block, and a typical plot (the 

intersection of a row block and a column block). Thus, there are three strata, and hence the 

Block Structure is 

 

Row + Column + Row.Column 

 

which can be shortened to Row*Column, or, since the final stratum can always be omitted,  

Row + Column. 
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Example 12 Wheat yields (kg per plot) from Steel and Torrie, page 224. 

 

 Column block  Column block 

Row block 1 2 3 4  1 2 3 4 

1 C D B A  10.5 7.7 12.0 13.2 

2 B A C D  11.1 12.0 10.3 7.5 

3 D C A B  5.8 12.2 11.2 13.7 

4 A B D C  11.6 12.3 5.9 10.2 

 

 
 

Analysis of variance 

  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Row_Block stratum 3  1.9550  0.6517  1.44   
  
Column_Block stratum 3  6.8000  2.2667  5.00   
  
Row_Block.Column_Block stratum 
Variety 3  78.9250  26.3083  58.03 <.001 
Residual 6  2.7200  0.4533     
  
Total 15  90.4000       
 

Message: the following units have large residuals. 
Row_Block 4 Column_Block 4    -0.85  s.e.   0.41 
  

Tables of means 

  
Variate: Yield 
  
Grand mean  10.45  
  
 Variety  A  B  C  D 
   12.00  12.27  10.80  6.72 
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Standard errors of differences of means 

  
Table Variety   
rep.  4   
d.f.  6   
s.e.d.  0.476   
  
  

Least significant differences of means (5% level) 

  
Table Variety   
rep.  4   
d.f.  6   
l.s.d.  1.165   
  
  

Estimated stratum variances 

 
Variate: Yield 
  
Stratum variance  effective d.f.   variance component  
Row_Block  0.652  3.000  0.050 
Column_Block  2.267  3.000  0.453 
Row_Block.Column_Block  0.453  6.000  0.453 

 

From the stratum variances, columns show more variability than rows. 

 

 

LMM (REML) analysis 

 

For this design there are three variance estimates coming from the three strata – rows, 

columns and plots. As before, the Fixed Model contains the one factor, Variety, while the 

Random Model is Row_Block + Column_Block + Row_Block.Column_Block, or simply 

Row_Block*Column_Block. 
 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Variety 
Random model: Row_block + Column_block + Row_block.Column_block 
Number of units: 16 
  
Row_block.Column_block used as residual term 
  
Sparse algorithm with AI optimisation 
 

Estimated variance components 

Random term component s.e. 
Row_block  0.0496  0.1482 
Column_block  0.4533  0.4673 
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Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
Row_block.Column_block Identity Sigma2 0.453  0.2617 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  13.97  9 
   

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Variety 174.10 3 58.03 6.0 <0.001 
  

Table of predicted means for Constant 
  
  10.45    Standard error:  0.393 
  

Table of predicted means for Variety 

 
 Variety A B C D 
  12.00 12.27 10.80 6.72 
 
Standard error of differences: 0.4761   

 

Notice, as usual: 
  

Variety 

            
 Variety A 1  *    
 Variety B 2  1.165  *   
 

 

 The estimates of variance are the same as the stratum variances given in the ANOVA. 

 

 The F statistic is the same as the variance ratio of the ANOVA.  

 

 The means and s.e.d. values are the same as from ANOVA. REML also gives 1.165 as 

the common least significant difference (5% level) of means (in a complete matrix of 

values). 
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Split-plot design (in randomized blocks) 
 

Firstly, we will use GenStat’s Design menu to generate a field plan to correspond to Steel and 

Torrie’s oats experiment (page 383) with four varieties randomised to whole plots and four 

chemical seed treatments (one of which is a control) to split plots. Appropriate factor labels 

have replaced numbers. 

 

 
 

Notice that GenStat creates three factor columns (Block, W_Plot and S_Plot), one for each of 

the three strata in this experiment. The field plan is also printed in the Output window. 

 

Treatment combinations on each unit of the design 

 
 S_Plots 1  2  3  4  
 Block W_Plots   
 1 1 4 3 4 4 4 1 4 2 
  2 3 4 3 1 3 2 3 3 
  3 1 3 1 2 1 4 1 1 
  4 2 2 2 4 2 3 2 1 
 2 1 1 1 1 4 1 3 1 2 
  2 2 4 2 1 2 3 2 2 
  3 3 1 3 4 3 2 3 3 
  4 4 2 4 4 4 1 4 3 
 3 1 4 4 4 1 4 2 4 3 
  2 1 3 1 1 1 2 1 4 
  3 3 2 3 3 3 1 3 4 
  4 2 2 2 4 2 3 2 1 
 4 1 1 2 1 3 1 1 1 4 
  2 3 3 3 4 3 1 3 2 
  3 2 4 2 1 2 3 2 2 
  4 4 4 4 3 4 1 4 2 
 
Treatment factors are listed in the order: Varieties, Chemical. 
 

  
This field plan is reproduced graphically with labels: 
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Block 1 

Panogen Agrox Check Ceresan M Branch 

Agrox Check Ceresan M Panogen Clinton 

Panogen Ceresan M Agrox Check Vicland (1) 

Ceresan M Agrox Panogen Check Vicland (2) 

Block 2 

Check Agrox Panogen Ceresan M Vicland (1) 

Agrox Check Panogen Ceresan M Vicland (2) 

Check Agrox Ceresan M Panogen Clinton 

Ceresan M Agrox Check Panogen Branch 

Block 3 

Agrox Check Ceresan M Panogen Branch 

Panogen Check Ceresan M Agrox Vicland (1) 

Ceresan M Panogen Check Agrox Clinton 

Ceresan M Agrox Panogen Check Vicland (2) 

Block 4 

Ceresan M Panogen Check Agrox Vicland (1) 

Panogen Agrox Check Ceresan M Clinton 

Agrox Check Panogen Ceresan M Vicland (2) 

Agrox Panogen Check Ceresan M Branch 

 

There are clearly three strata here: blocks, the ¼ block strips (the whole-plots) that the 

varieties are randomised to, and the ¼ whole-plot shapes (the split-plots) that the seed 

protectants were assigned to at random. The Block Structure is therefore 

 

Block + Block.Whole_Plot + Block.Whole_Plot.Split_plot 

 

with the shortcut 

 
Block/Whole_Plot/Split_plot 
 

which describes the way the units were formed in the field: whole-plots were formed as large 

units within blocks, and split-plots were formed as smaller units within whole-plots.  

 

Providing you set up these three factors, this structure is what you would use irrespective of 

the complexity of the whole-plot treatment and the split-plot treatment structures. For 

example, the treatments applied to whole-plots could have a 3×4 factorial structure, while 

those applied to the split-plots a (2×2+1) incomplete factorial structure. 

 

For this example, there were simple structures for both whole-plot and split-plot treatment 

structures. Hence the following Block Structure can be used instead: 

 

Block + Block.Variety + Block.Variety.Chemical 

 

In fact this design can be thought of in two ways. 
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1. RCBD with varieties as treatments. 

Block 1 

    Branch 

    Clinton 

    Vicland (1) 

    Vicland (2) 

Block 2 

    Vicland (1) 

    Vicland (2) 

    Clinton 

    Branch 

Block 3 

    Branch 

    Vicland (1) 

    Clinton 

    Vicland (2) 

Block 4 

    Vicland (1) 

    Clinton 

    Vicland (2) 

    Branch 

 

This, in fact, forms the whole-plot part of the combined split-plot ANOVA. 

 

2. Four separate RCBDs, one per variety, with seed chemical protectants as treatments. 

This is one such layout, for Branch. 
 

Block 1 Panogen Agrox Check Ceresan M Branch 

Block 2 Ceresan M Agrox Check Panogen Branch 

Block 3 Agrox Check Ceresan M Panogen Branch 

Block 4 Agrox Panogen Check Ceresan M Branch 

 

In fact, this is an important concept in checking the assumptions at the split-plot level. This 

ANOVA produces 9 df for the Residual MS. There are four such residuals to check for 

“homogeneity”; their average is, in fact, the split-plot Residual MS in the combined analysis. 

The combined analysis is feasible only when these individual variance components are 

commensurable.  
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Example 13 From Snedecor and Cochran page 384 

 

  Seed chemical protectant 

Cultivar Block Control Ceresan M Panogen Agrox 

Vicland (1) 1 42.9 53.8 49.5 44.4 

 2 41.6 58.5 53.8 41.8 

 3 28.9 43.9 40.7 28.3 

 4 30.8 46.3 39.4 34.7 

Vicland (2) 1 53.3 57.6 59.8 64.1 

 2 69.6 69.6 65.8 57.4 

 3 45.4 42.4 41.4 44.1 

 4 35.1 51.9 45.4 51.6 

Clinton 1 62.3 63.4 64.5 63.6 

 2 58.5 50.4 46.1 56.1 

 3 44.6 45.0 62.6 52.7 

 4 50.3 46.7 50.3 51.8 

Branch 1 75.4 70.3 68.8 71.6 

 2 65.6 67.3 65.3 69.4 

 3 54.0 57.6 45.6 56.6 

 4 52.7 58.5 51 47.4 

 

First, the standard split-plot ANOVA is obtained (using the specific split-plot menu). 

 

Analysis of variance 

  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 3  2842.87  947.62  13.79   
  
Block.Cultivar stratum 
Cultivar 3  2848.02  949.34  13.82  0.001 
Residual 9  618.29  68.70  3.38   
  
Block.Cultivar.Chemical stratum 
Chemical 3  170.54  56.85  2.80  0.054 
Cultivar.Chemical 9  586.47  65.16  3.21  0.006 
Residual 36  731.20  20.31     
  
Total 63  7797.39       
 

Message: the following units have large residuals. 
  
Block 2 Cultivar clinton    -7.27  s.e.   3.11 
Block 2 Cultivar vicland2    6.45  s.e.   3.11 
   
Block 2 Cultivar clinton Chemical panogen    -8.24  s.e.   3.38 
Block 2 Cultivar vicland2 Chemical agrox    -9.09  s.e.   3.38 
Block 3 Cultivar clinton Chemical panogen    9.81  s.e.   3.38 
Block 4 Cultivar vicland2 Chemical control    -8.34  s.e.   3.38 
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Tables of means 

  
Variate: Yield 
  
Grand mean  52.81  
  
 Cultivar  branch  clinton  vicland1  vicland2 
   61.07  54.31  42.46  53.41 
  
 Chemical  agrox  ceresan  control  panogen 
   52.23  55.20  50.69  53.13 
  
 Cultivar Chemical  agrox  ceresan  control  panogen 
 branch   61.25  63.43  61.93  57.68 
 clinton   56.05  51.38  53.93  55.88 
 vicland1   37.30  50.63  36.05  45.85 
 vicland2   54.30  55.38  50.85  53.10 
  

Standard errors of differences of means 

  
Table Cultivar Chemical Cultivar   
   Chemical   
rep.  16  16  4   
s.e.d.  2.930  1.593  4.025   
d.f.  9  36  26.78   
Except when comparing means with the same level(s) of 
Cultivar    3.187   
d.f.    36   

Least significant differences of means (5% level) 

  
Table Cultivar Chemical Cultivar   
   Chemical   
rep.  16  16  4   
l.s.d.  6.629  3.232  8.263   
d.f.  9  36  26.78   
Except when comparing means with the same level(s) of 
Cultivar    6.463   
d.f.    36   

 

GenStat organizes the analysis into three strata corresponding to what was done in the field. 

Notice the following. 

 

 Cultivar is tested in the whole-plot stratum, since whole-plots are the replicates for this 

treatment factor. 

 

 Chemical and Cultivar.Chemical are tested in the split-plot stratum, since split-plots are the 

replicates for this treatment/interaction. 

 

 There are several s.e.d. and l.s.d. values. Each is used for an appropriate treatment mean 

comparison. Not all comparisons lead to exact t tests. Performing a two stage 

randomization in the field has made the subsequent analysis slightly more complex than a 

one stage randomization. 
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Before interpreting the analysis, we should check the residual plot. Maybe there is some 

fanning, but nothing jumps out as a major problem. 

 

 

 
 

Before interpreting the analysis, the components that form the split-plot error should be 

checked. 

 

We do this in GenStat by clicking in the spreadsheet, then Restrict/Filter > To Groups (factor 

levels). Select Cultivar and, one by one, each of the levels to perform a simple RCBD 

ANOVA. The Residual MS values (each with 9 df) are 4.128(Vicland (1)), 34.40 (Vicland (2)), 

29.76 (Clinton), 12.96 (Branch). These appear quite different. Their average is 20.312, which 

is the split-plot Residual MS, with 4×9 = 36 df. In fact, performing a Bartlett test of 

homogeneity of variances on these indicates significance at P=0.021. 

 

 
 

Bartlett's test for homogeneity of variances 

  
Chi-square 9.75 on 3 degrees of freedom: probability 0.021 

Normal plot Half-Normal plot

Fitted-value plotHistogram of residuals
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Steel and Torrie give further information about these varieties. Vicland (1) is a variety 

infected with H. victoriae, Vicland (2) is the same variety but is not infected. Clinton and 

Branch are varieties resistant to H. victoriae. The variation in the Vicland (1) data appears 

smaller than for the other varieties. It is possible that the actual levels of this factor are 

associated with different variances: one level is expected to have consistently smaller yields, 

since these seeds have been infected. Linear Mixed Models (REML) allows us to model this. 

 

Has the combined analysis overlooked this problem? If we Save the fitted values and 

residuals, we can obtain a residual plot with different colours for the different varieties. 

 

 
 

In this plot, the residuals from Vicland (1) appear less varied than the other varieties 

(corresponding to the significantly smaller variance in the yields of this variety). It would 

appear that the combined split-plot analysis is inappropriate for these data.  
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LMM (REML) analysis of split-plot design (in randomized blocks) 
 

For this split-plot there are three strata: blocks, whole-plots and split-plots. Hence, the 

Random Model is Block/W_Plot/S_Plot. In order to allow a changing variance across cultivars, 

we need to mention them in the Random Model. Cultivars were allocated at random to the 

whole plots, so we can express the Random Model as Block/Cultivar/S_Plot, 

Block/Cultivar/Chemical, or simply as Block/Cultivar since the final stratum can be omitted. The 

stratum variances were estimated in ANOVA as follows: 

 

Estimated stratum variances 

Stratum variance  effective d.f.   variance component  
Block  947.624  3.000  54.933 
Block.Cultivar  68.699  9.000  12.097 
Block.Cultivar.Chemical  20.311  36.000  20.311 

 

Standard split-plot analysis via LMM (REML) 

 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Cultivar + Chemical + Cultivar.Chemical 
Random model: Block + Block.Cultivar + Block.Cultivar.Chemical 
Number of units: 64 
  
Block.Cultivar.Chemical used as residual term 
 

Estimated variance components 

Random term component s.e. 
Block  54.93  48.40 
Block.Cultivar  12.10  8.18 
 

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
 Block.Cultivar.Chemical Identity Sigma2 20.31  4.79 

  

Deviance: -2*Log-Likelihood 

  
 Deviance d.f. 
  237.21  45 
 

Wald tests for fixed effects 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Cultivar 41.46 3 13.82 9.0  0.001 
Chemical 8.40 3 2.80 36.0  0.054 
Cultivar.Chemical 28.87 9 3.21 36.0  0.006 

 

Table of predicted means for Constant 
  
  52.81    Standard error:  3.848 
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Table of predicted means for Cultivar 

 Cultivar Branch Clinton Vicland (1) Vicland (2) 
  61.07 54.31 42.46 53.41 
 
Standard error of differences: 2.930  
  

Table of predicted means for Chemical 
 Chemical Control Ceresan Panogen Agrox 
  50.69 55.20 53.12 52.22 
 
Standard error of differences: 1.593  
 

Table of predicted means for Cultivar.Chemical 
 Chemical Control Ceresan Panogen Agrox 
 Cultivar   
 Branch 61.92 63.42 57.67 61.25 
 Clinton 53.93 51.38 55.88 56.05 
 Vicland (1) 36.05 50.63 45.85 37.30 
 Vicland (2) 50.85 55.38 53.10 54.30 
 
Standard errors 
  
 Chemical Agrox Ceresan Control Panogen 
 Cultivar   
 Branch 4.67 4.67 4.67 4.67 
 Clinton 4.67 4.67 4.67 4.67 
 Vicland (1) 4.67 4.67 4.67 4.67 
 Vicland (2) 4.67 4.67 4.67 4.67 

 

LMM (REML) gives the same means, s.e.m., s.e.d. and l.s.d. values as ANOVA, but in full 

matrix form.  

 

Next, we demonstrate how to check for changing variance across cultivars. Given the nature 

of the cultivars and seed chemical protectants, we might expect this variance to change only 

at the split-plot level. The following change in deviance table explores various models for 

Cultivar in firstly the split-plot error term (Block.Cultivar.Chemical) and then in the whole-plot 

error term (Block.Cultivar). 

 

Model for Cultivar in 
Block.Cultivar 

Model for Cultivar in 
Block.Cultivar.Chemical deviance d.f. 

change in 

deviance 

change in 

d.f. P value 

Identity Identity 237.21 45    

Identity Diagonal 225.78 42 11.43 3 0.010 

Diagonal Diagonal 223.69 39 2.09 3 0.554 

 

The analysis allowing for a changing variance at the split-plot level is as follows. Use Save if 

you want to take the s.e.d. values into Excel or Word most efficiently. 

 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Cultivar + Chemical + Cultivar.Chemical 
Random model: Block + Block.Cultivar + Block.Cultivar.Chemical 
Number of units: 64 
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Block.Cultivar.Chemical used as residual term with covariance structure as below 
  
Sparse algorithm with AI optimisation 
 

Covariance structures defined for random model 
  
Covariance structures defined within terms: 
Term Factor Model Order No. rows 
Block.Cultivar.Chemical Block Identity 0 4 
 Cultivar Diagonal 4 4 
 Chemical Identity 0 4 
  
 
 

Estimated variance components 

Random term component s.e. 
Block  55.842  48.137 
Block.Cultivar  7.728  6.384 
 

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
 Block.Cultivar.Chemical Sigma2 1.000 fixed 
 
 Block Identity -         - - 
 Cultivar Diagonal d_1  12.81  5.98 
     d_2  33.19  16.03 
     d_3  4.060  1.898 
     d_4  37.03  17.41 
 Chemical Identity -         - - 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  225.78  42 
   

Wald tests for fixed effects 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Cultivar 73.54 3 24.04 7.5 <0.001 
Chemical 93.98 3 31.33 19.4 <0.001 
Cultivar.Chemical 58.23 9 5.90 18.8 <0.001 
  
Dropping individual terms from full fixed model 
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Cultivar.Chemical 58.23 9 5.90 18.8 <0.001 
 
 
 

Table of predicted means for Constant 
  52.81    Standard error:  3.845 
 
 

Table of predicted means for Cultivar 

 Cultivar Branch Clinton Vicland (1) Vicland (2) 
  61.07 54.31 42.46 53.41 

  

This section is not important in this 

analysis, but, without the interaction 

in the model, P values for both main 

effects when entered last would be 

available here. Important for 

unbalanced designs. 

Allowing the variance to change across cultivars 

These were the four individual Residual 

MS from separate RCBD analyses, one for 

each cultivar. 
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Standard errors of differences between pairs 
            
 Cultivar Branch      1   *       
 Cultivar Clinton     2  2.60   *     
 Cultivar Vicland (1) 3  2.22  2.49   *   
 Cultivar Vicland (2) 4  2.64  2.87  2.54   * 
     1  2  3  4 
`  

Table of predicted means for Chemical 
 Chemical Control Ceresan Panogen Agrox 
  50.69 55.20 53.12 52.22 
 
Standard errors of differences between pairs 
 Chemical Control 1   *       
 Chemical Ceresan 2  1.65   *     
 Chemical Panogen 3  1.65  1.65   *   
 Chemical Agrox   4  1.65  1.65  1.65   * 
     1  2  3  4 

Table of predicted means for Cultivar.Chemical 
 Chemical Control Ceresan Panogen Agrox 
 Cultivar   
 Branch 61.92 63.42 57.67 61.25 
 Clinton 53.93 51.38 55.88 56.05 
 Vicland (1) 36.05 50.63 45.85 37.30 
 Vicland (2) 50.85 55.38 53.10 54.30 
 
Standard errors 
  
 Chemical Agrox Ceresan Control Panogen 
 Cultivar   
 Branch 4.37 4.37 4.37 4.37 
 Clinton 4.92 4.92 4.92 4.92 
 Vicland (1) 4.11 4.11 4.11 4.11 
 Vicland (2) 5.01 5.01 5.01 5.01 
 
Standard errors of differences between pairs 
           
Cultivar Branch.Chemical Control      1   *       
Cultivar Branch.Chemical Ceresan      2  2.53   *     
Cultivar Branch.Chemical Panogen      3  2.53  2.53   *   
… … … … … … 
Cultivar Vicland (2).Chemical Agrox   16  4.04  4.04  4.04  4.04 
    1  2  3  4 
 etc. 

 

Notice that the s.e.m. values are all higher than those obtained from the split-plot ANOVA, 

which were given as 2.846 (the first of the two possibilities). For the ANOVA, the block 

effect sums to 0 for each mean so the block effect is not part of the calculation. 

 

Standard errors of means 

Table Cultivar Chemical Cultivar   
   Chemical   
rep.  16  16  4   
e.s.e.  2.072  1.127  2.846   
d.f.  9  36  26.78   
Except when comparing means with the same level(s) of 
Cultivar    2.253   
d.f.    36  
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Meta Analysis (REML) analysis 
 

Since the variance appears to change across a single factor (Cultivar), the analysis is simply 

performed using Stats > Meta Analysis > REML of Multiple Experiments. The fixed and random 

models are those from ANOVA or LMM; we simply declare Cultivar as the “notional” factor 

over which the residual changes across “Experiments”: 

 

 
 
 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Cultivar + Chemical + Cultivar.Chemical 
Random model: Block + Block.Cultivar + Block.Cultivar.Chemical 
Number of units: 64 
  
Separate residual terms for each level of experiment factor: Cultivar 
  
Sparse algorithm with AI optimisation 
  

Estimated variance components 

  
Random term component s.e. 
Block  55.84  48.14 
Block.Cultivar  7.73  6.38 
Block.Cultivar.Chemical  1.00 aliased 
  

Residual model for each experiment 
  
Experiment factor: Cultivar  
  
Experiment Term   Factor Model(order) Parameter Estimate s.e. 
Branch Residual Identity Variance 11.81 5.98 
Clinton Residual Identity Variance 32.19 16.03 
Vicland (1) Residual Identity Variance 3.060 1.898 
Vicland (2) Residual Identity Variance 36.03 17.41 
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Deviance: -2*Log-Likelihood 

  
 Deviance d.f. 
  225.78  42 
   
Note: deviance omits constants which depend on fixed model fitted. 
 

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Cultivar 73.54 3 24.04 7.5  <0.001 
Chemical 93.98 3 31.33 19.4  <0.001 
Cultivar.Chemical 58.23 9 5.90 18.8  <0.001 

 

Notice that the parameterization for the variances is slightly different here. A random error 

term is added with a variance σ2
 whose estimate (1.00) is shown as “aliased”: 

Random term component s.e. 
Block.Cultivar.Chemical  1.00 aliased 

 

This value needs to be added to the separate estimates of variances for the four cultivars (e.g. 

for Branch, the estimate of variance is 11.81+1.00 = 12.81, which was the the Residual MS 

from the RCB analysis of the Branch data in the four blocks with the four chemical 

treatments). 

 

With the more realistic modeling of changing variances across cultivars in the split-plot 

experiment, sem and sed values all change. Selecting to show Standard Errors of All Estimates 

in the options shows the effect of this change. With a constant variance model, the sem value 

is 4.67. With a changing variance model, it varies from a low 4.11 to a high 5.01. Unlike the 

ANOVA, the calculation of the s.e.m. value involves the block variance, the whole-plot 

variance and the split-plot variance. 

 

Table of predicted means for Cultivar.Chemical 
 
 Chemical Agrox Ceresan Control Panogen 
 Cultivar   
 Branch 61.25 63.43 61.93 57.67 
 Clinton 56.05 51.38 53.93 55.88 
 Vicland (1) 37.30 50.62 36.05 45.85 
 Vicland (2) 54.30 55.38 50.85 53.10 
  
Standard errors 
  
 Chemical Agrox Ceresan Control Panogen 
 Cultivar   
 Branch 4.37 4.37 4.37 4.37 
 Clinton 4.92 4.92 4.92 4.92 
 Vicland (1) 4.11 4.11 4.11 4.11 
 Vicland (2) 5.01 5.01 5.01 5.01 
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General split-plot design 

 

The split-plot design in the 

previous section had just one 

treatment factor applied to 

whole-plots and to split-plots. 

There is no restriction on the 

treatment structure in either 

stratum. GenStat’s Design 

menu allows for a general 

split-plot design. You simply 

indicate how many treatment 

factors there are altogether, 

and how many of these are 

allocated to split-units. The 

following example produces a 

random design with cultivar × 

spacing × harvest treatments 

(3×2×4 = 24 combinations) 

allocated to whole-plots, and 

four levels of nitrogen 

allocated to split-plots within 

each whole-plot. 

 

GenStat creates, as before, a Block stratum, a W_Plot stratum and a S_Plot stratum. This time, 

there are three factors required to fully define the whole-plots. Nevertheless, the Block 

Structure remains as Block/W_Plot/S_Plot. 

 

PlotNo Block! W_Plots! S_Plots! Cultivar! Spacing! Harvest! Nitrogen! 

1101 1 1 1 2 2 2 1 

1102 1 1 2 2 1 2 2 

1103 1 1 3 2 2 2 4 

1104 1 1 4 2 1 1 3 

1105 1 1 5 2 1 2 3 

1106 1 1 6 2 1 2 1 

1107 1 1 7 2 1 1 2 

1108 1 1 8 2 2 2 3 

1109 1 1 9 2 2 1 4 

1110 1 1 10 2 2 2 2 

1111 1 1 11 2 1 1 1 

1112 1 1 12 2 2 1 3 

1113 1 1 13 2 1 1 4 

1114 1 1 14 2 2 1 2 

1115 1 1 15 2 2 1 1 

1116 1 1 16 2 1 2 4 

1201 1 2 1 3 2 1 2 

etc … 
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Split-plot design with a two-way factorial split treatment structure 

 

Curt Lee (Agro-Tech, Inc., Velva, North Dakota, USA) kindly supplied data from the 

following experiment on wheat. 

 

Six blocks were set up and each divided into two whole-plots (WP). One whole-plot was 

randomly fertilized with a full recommended rate of nitrogen fertilizer (Standard), the other 

not fertilized (Reduced). The final applied-N plus residual-N was 100 lbs for the standard 

fertility and 50 lbs for the reduced fertility plots. 

 

Each whole-plot was divided into four split-plots (SP). The four treatments allocated 

randomly to these plots were a fungicide treatment (or a blank treatment), and an early (at the 

tillering stage) or a late (at the flag leaf stage) application of the fungicide and the blank.  

 

Example 14 Wheat split-plot experiment with a factorial split-plot treatment structure 

  SP  SP   

Block  WP 1 2 3 4  1 2 3 4 WP Block 

1 
1 1.77 2.08 1.79 2.68  2.07 2.01 2.56 3.89 1 

4 
2 2.79 3.69 2.77 2.97  2.03 2.16 2.03 2.50 2 

             

2 
1 2.58 3.55 2.74 3.29  2.15 2.13 2.07 2.41 1 

5 
2 2.05 2.37 2.19 2.25  2.97 2.28 2.53 3.53 2 

             

3 
1 3.21 2.81 2.16 2.61  2.93 3.44 2.95 3.49 1 

6 
2 2.69 3.65 3.15 3.10  2.30 2.76 2.49 3.54 2 

             

KEY    = Reduced Fertility     = Early Timing No Fungicide   

    = Standard Fertility     = Late Timing No Fungicide   

         = Early Timing Fungicide   

         = Late Timing Fungicide   

 

The blank plots were sprayed with the treatments that contained all the carrier material 

(water, solvents, etc), except the active ingredient. Thus, since a treatment was actually 

applied to the blank plots, the split-plot treatments can be thought of as a 2 × 2 factorial 

combination. 

 

Alternatively, you can think of the split-plot treatments as a simple set of four treatments, and 

extract three contrasts to estimate the following characteristics. 
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a) Estimate the effect of the fungicide versus no fungicide, by comparing the mean 

yields from fungicide (early and late) plots to no fungicide (early and late) plots. 

 

b) Estimate the effect of different timing by comparing the mean yields from 

fungicide early plots to fungicide late plots. 

 

c) Estimate the effect of the two check treatments by comparing the mean yields 

from no fungicide early plots to no fungicide late plots. (They should yield the 

same, unless they are getting something out of the carrier materials.) 

 

With the split-plot treatment as a 2 × 2 factorial 

Analysis of variance 

  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 5  2.1795  0.4359  4.18   
  
Block.W_Plot stratum 
Fert 1  4.7376  4.7376  45.38  0.001 
Residual 5  0.5220  0.1044  0.97   
  
Block.W_Plot.S_Plot stratum 
Fung 1  2.7552  2.7552  25.51 <.001 
Timing 1  0.5043  0.5043  4.67  0.039 
Fert.Fung 1  0.2002  0.2002  1.85  0.183 
Fert.Timing 1  0.0261  0.0261  0.24  0.626 
Fung.Timing 1  0.6674  0.6674  6.18  0.019 
Fert.Fung.Timing 1  0.0000  0.0000  0.00  0.993 
Residual 30  3.2398  0.1080     
  
Total 47  14.8322       
 

Message: the following units have large residuals. 
Block 4 W_Plot 1 S_Plot 4    0.710  s.e.   0.260 
Block 5 W_Plot 2 S_Plot 4    0.642  s.e.   0.260 
Block 6 W_Plot 1 S_Plot 4    0.583  s.e.   0.260 
  

Tables of means 

etc… 
 

Estimated stratum variances 

Stratum variance  effective d.f.   variance component  
Block  0.4359  5.000  0.0414 
Block.W_Plot  0.1044  5.000  -0.0009 
Block.W_Plot.S_Plot  0.1080  30.000  0.1080 

  

The three residuals were all from edge plots in blocks 4, 5 and 6. On checking, the research 

company discovered that these plots had not been trimmed to equal length. For their analysis 

they went back, measured each plot and corrected the yield based on actual harvested plot 

length. We will not do that here. 
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With the split-plot treatment as 4 simple treatments with structure 

 

 
 

Analysis of variance 

  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 5  2.1795  0.4359  4.18   
  
Block.W_Plot stratum 
Fert 1  4.7376  4.7376  45.38  0.001 
Residual 5  0.5220  0.1044  0.97   
  
Block.W_Plot.S_Plot stratum 
Split_treatment 3  3.9269  1.3090  12.12 <.001 
  Fung vs none 1  2.7552  2.7552  25.51 <.001 
  Fung Early vs Late 1  1.1660  1.1660  10.80  0.003 
  Blank Early vs Late 1  0.0057  0.0057  0.05  0.820 
Fert.Split_treatment 3  0.2263  0.0754  0.70  0.560 
  Fert.Fung vs none 1  0.2002  0.2002  1.85  0.183 
  Fert.Fung Early vs Late 1  0.0126  0.0126  0.12  0.735 
  Fert.Blank Early vs Late 1  0.0135  0.0135  0.13  0.726 
Residual 30  3.2398  0.1080     
  
Total 47  14.8322       
  

Message: the following units have large residuals. 
  
Block 4 W_Plot 1 S_Plot 4    0.710  s.e.   0.260 
Block 5 W_Plot 2 S_Plot 4    0.642  s.e.   0.260 
Block 6 W_Plot 1 S_Plot 4    0.583  s.e.   0.260 
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Tables of effects and contrasts 

 

Block.W_Plot.S_Plot stratum 

  

Split_treatment contrasts 

  
Fung vs none   0.96,  s.e. 0.190,  ss.div. 3.00 
  
Fung Early vs Late   0.44,  s.e. 0.134,  ss.div. 6.00 
  
Blank Early vs Late  -0.03,  s.e. 0.134,  ss.div. 6.00 
  

Fert.Split_treatment contrasts 

  
Fert.Fung vs none,  e.s.e. 0.268,  ss.div. 1.50 
  
 Fert  Reduced  Standard 
   -0.26  0.26 
  
Fert.Fung Early vs Late,  e.s.e. 0.190,  ss.div. 3.00 
  
 Fert  Reduced  Standard 
   -0.05  0.05 
  
Fert.Blank Early vs Late,  e.s.e. 0.190,  ss.div. 3.00 
  
 Fert  Reduced  Standard 
   -0.05  0.05 
  

Tables of means 

 
Grand mean  2.670  
  
 Fert  Reduced  Standard 
   2.356  2.984 
  
 Split_treatment  NoF_Early  F_Early  NoF_Late  F_Late 
   2.446  2.689  2.415  3.130 
  
 Fert Split_treatment  NoF_Early  F_Early  NoF_Late  F_Late 
 Reduced   2.220  2.333  2.142  2.728 
 Standard   2.672  3.045  2.688  3.532 
 

Standard errors of differences of means 

  
Table Fert Split_treatment  
   Fert   
   Split_treatment   
rep.  24  12  6   
s.e.d.  0.0933  0.1342  0.1889   
d.f.  5  30  32.32   
Except when comparing means with the same level(s) of 
Fert    0.1897   
d.f.    30   

 

This design is straightforward and will not be repeated in LMM (REML). 

From the ANOVA, we see that: 

 

 applying the fungicide late, at the 

flag leaf stage, gives significantly 

better yields (P = 0.003). The 

difference in means (for which see 

below) is 0.44 (± 0.134) kg/plot. 

 

 Using fungicide has a yield 

advantage, on average, of  

½(0.96 ± 0.190) = 0.48 ± 0.095 

kg/plot (P < 0.001). The ½ arises 

because the contrast we want is  

½(µ2+µ4)–½(µ1+µ3) 

and we currently have 

(µ2+µ4)-(µ1+µ3) 

which is essentially row 1 of the 

contrast matrix in the screen 

capture above. 
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Possible field layout for split-split-plot experiment 

 

Block 1 

       
                1 2 3   13000 

   3 2 1   16000 

   3 1 2   10000 

             
                        3 1 2   16000 

   2 3 1   13000 

   2 3 1   10000 

              
 

Block 2 

                             3 2 1   10000 

   2 3 1   16000 

   2 1 3   13000 

                     
                3 1 2   13000 

   1 2 3   16000 

   1 3 2   10000 

                          
        

Block 3 

                2 3 1   16000 

   3 2 1   10000 

   3 1 2   13000 

                     
                1 2 3   16000 

   1 3 2   10000 

   3 2 1   13000 

                          
 

Block 4 

                             1 3 2   10000 

   1 3 2   16000 

   1 2 3   13000 

                     
                2 1 3   10000 

   3 1 2   16000 

   3 2 1   13000 

                          
 

Key to fertilizer: 

1=  60 lb nitrogen 

2=120 lb nitrogen 

3=180 lb nitrogen 

 

Key to irrigation: 

Irrigated  

Non-irrigated  

 

Key to Spacing: 

Spacing 13000  

Spacing 16000  

Spacing 10000  
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Split-split-plot design (in randomized blocks) 
 

An experiment was conducted to determine that effects of irrigation, planting density (or 

stand), and fertilizer level on the yield of corn. The smallest area that could be irrigated was 

half a block – or one whole-plot. The two irrigation treatments were randomly allocated to 

the whole-plots in each of four blocks. Each whole-plot was divided into three split-plots, and 

with three planting densities (rates of 10,000, 13,000 and 16,000 plants acre
-1

) randomly 

allocated to each. Finally, each split-plot was divided into three split-split-plots, with three 

fertilisers (60, 120 and 180 lb of nitrogen) randomly allocated to each. 

 

This is quite a different layout compared to a simple RCBD in which all 18 treatment 

combinations could occur in any plot of each block. In this case, practical limitations dictated 

the layout; the penalty is a more complex analysis. The Block Structure comes about as 

follows. 

 

 Blocks were identified in the field, so Block forms the first stratum. 

 

 Half block areas were prepared and one of these in each block was (randomly) irrigated, 

forming a Block.Irrigated stratum. Irrigated and non-irrigated plot means are compared 

within this stratum, which is basically an RCBD with 4 blocks and 2 treatments. 

 

 Each half-block was split into three areas and one of three spacings used (randomly) in 

each. Thus, we have a third stratum, Block.Irrigated.Spacing, and these units are used in 

constructing Spacing and Spacing.Irrigated F-tests. 

 

 Each spacing strip was split into three even smaller areas and one of three fertilisers 

applied (randomly) in each. This gives rise to a fourth and final stratum, 

Block.Irrigated.Spacing.Fertiliser, and these units are used in constructing F-tests for the 

Fertiliser main effect and any interaction involving this factor. 

 

To summarise, the Block Structure is  

 

Block + Block.Irrigated + Block.Irrigated.Spacing + Block.Irrigated.Spacing.Fertiliser 

 

which simplifies to Block/Irrigated/Spacing/Fertiliser. 

 

Example 15 Yields of corn (bushels acre
-1

) from Snedecor & Cochran page 328 

 

  Non-irrigated blocks Irrigated blocks 

Stand Fertilizer 1 2 3 4 1 2 3 4 

10,000 

60 90 83 85 86 80 102 60 73 

120 95 80 88 78 87 109 104 114 

180 107 95 88 89 100 105 114 114 

13,000 

60 92 98 112 79 121 99 90 109 

120 89 98 104 86 110 94 118 131 

180 92 106 91 87 119 123 113 126 

16,000 

60 81 74 82 85 78 136 119 116 

120 92 81 78 89 98 133 122 136 

180 93 74 94 83 122 132 136 133 
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Analysis of variance 

  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 3  194.44  64.81  0.14   
  
Block.Irrigated stratum 
Irrigated 1  8277.56  8277.56  17.59  0.025 
Residual 3  1411.78  470.59  2.03   
  
Block.Irrigated.Stand stratum 
Stand 2  1758.36  879.18  3.78  0.053 
Irrigated.Stand 2  2747.03  1373.51  5.91  0.016 
Residual 12  2787.94  232.33  2.69   
  
Block.Irrigated.Stand.Fertilizer stratum 
Fertilizer 2  1977.44  988.72  11.45 <.001 
Irrigated.Fertilizer 2  953.44  476.72  5.52  0.008 
Stand.Fertilizer 4  304.89  76.22  0.88  0.484 
Irrigated.Stand.Fertilizer  
 4  234.72  58.68  0.68  0.611 
Residual 36  3108.83  86.36     
  
Total 71  23756.44       
 

Message: the following units have large residuals. 
  
Block 1 Irrigated Irrigated Stand 13,000    12.7  s.e.   6.2 
Block 1 Irrigated Irrigated Stand 16,000    -13.6  s.e.   6.2 
   
Block 2 Irrigated Irrigated Stand 10,000 Fertilizer 60.  14.7  s.e.   6.6 
Block 3 Irrigated Irrigated Stand 10,000 Fertilizer 60.  -14.6  s.e.   6.6 
 

Tables of means 

 
Grand mean  99.7  
  
 Irrigated Non-irrigated Irrigated 
   89.0  110.4 
  
 Stand 10,000 13,000 16,000 
   92.8  103.6  102.8 
  
 Fertilizer  60.  120.  180. 
   92.9  100.6  105.7 
  
 Irrigated Stand 10,000 13,000 16,000 
 Non-irrigated   88.7  94.5  83.8 
 Irrigated   96.8  112.7  121.8 
  
 Irrigated Fertilizer  60.  120.  180. 
 Non-irrigated   87.3  88.2  91.6 
 Irrigated   98.6  113.0  119.8 
  
 Stand Fertilizer  60.  120.  180. 
 10,000   82.4  94.4  101.5 
 13,000   100.0  103.8  107.1 
 16,000   96.4  103.6  108.4 
  



 Statistical Advisory & Training Service Pty Ltd 

104 

 

 Irrigated Stand Fertilizer  60.  120.  180. 
 Non-irrigated 10,000   86.0  85.3  94.8 
  13,000   95.2  94.2  94.0 
  16,000   80.5  85.0  86.0 
 Irrigated 10,000   78.8  103.5  108.3 
  13,000   104.7  113.2  120.2 
  16,000   112.2  122.3  130.7 
  

Standard errors of differences of means 

Table Irrigated Stand Fertilizer Irrigated   
    Stand   
rep.  36  24  24  12   
s.e.d.  5.11  4.40  2.68  7.21   
d.f.  3  12  36  9.53   
Except when comparing means with the same level(s) of 
Irrigated     6.22   
d.f.     12   
Table Irrigated Stand Irrigated     
 Fertilizer Fertilizer Stand     
   Fertilizer     
rep.  12  8  4     
s.e.d.  5.98  5.81  8.99     
d.f.  5.54  30.80  21.28     
Except when comparing means with the same level(s) of 
Irrigated  3.79   8.22     
d.f.  36   30.80     
Stand   4.65      
d.f.   36      
Irrigated.Stand    6.57     
d.f.    36     
Irrigated.Fertilizer   8.22     
d.f.    30.80     
 

Least significant differences of means (5% level) 

  
Table Irrigated Stand Fertilizer Irrigated   
    Stand   
rep.  36  24  24  12   
l.s.d.  16.27  9.59  5.44  16.17   
d.f.  3  12  36  9.53   
Except when comparing means with the same level(s) of 
Irrigated     13.56   
d.f.     12   
Table Irrigated Stand Irrigated     
 Fertilizer Fertilizer Stand     
   Fertilizer     
rep.  12  8  4     
l.s.d.  14.92  11.85  18.67     
d.f.  5.54  30.80  21.28     
Except when comparing means with the same level(s) of 
Irrigated  7.69   16.76     
d.f.  36   30.80     
Stand   9.42      
d.f.   36      
Irrigated.Stand    13.33     
d.f.    36     
Irrigated.Fertilizer    16.76     
d.f.    30.80     
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Estimated stratum variances 

Stratum variance  effective d.f.   variance component 
Block  64.81  3.000  -22.54 
Block.Irrigated  470.59  3.000  26.47 
Block.Irrigated.Stand  232.33  12.000  48.66 
Block.Irrigated.Stand.Fertilizer  86.36  36.000  86.36 

 

Comparing 2-way and 3-way means is now a complex procedure. Note, however, that 

comparing two densities (/two fertilizers) both of which were irrigated (or non-irrigated) is 

straightforward (the l.s.d. values are 13.56/7.69), and so on. The differences in means come 

down to two significant interactions, and the following plots make these differences clear: 

 

  
 

Note that the Block MS is smaller than the highest stratum Residual MS, which is unusual. 

When analysing via REML we would be advised to force variance components to be positive. 

In the analysis above, we also ignored the potential variance problem we discussed 

previously brought about by having varying planting densities. 

 

 

LMM (REML) analysis 
 

This experiment illustrates the occasional need to restrict the variance estimates to be 

positive. In the ANOVA, the variance of the block stratum was estimated as -22.54 simply 

because the Block MS was smaller than the Residual MS in the whole-plot analysis. This 

indicates the absence of any block effect. 

 

For a split-split-plot design there are four strata, the Fixed Model being the same as the 

Treatment Structure of ANOVA (Fertilizer*Irrigated*Stand) and the Random Model being the 

same as the Block Structure (Block/Irrigated/Stand/Fertilizer). To ensure that all stratum 

variances are positive, you need to click Initial Values, choose Block and select positive for 

Constraints.  
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REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Irrigated + Stand + Fertilizer + Irrigated.Stand + 
Irrigated.Fertilizer + Stand.Fertilizer + Irrigated.Stand.Fertilizer 
Random model: Block + Block.Irrigated + Block.Irrigated.Stand + 
Block.Irrigated.Stand.Fertilizer 
Number of units: 72 
  
Block.Irrigated.Stand.Fertilizer used as residual term 
  

Estimated variance components 

Random term component s.e. 
Block  0.00 bound 
Block.Irrigated  3.93  20.15 
Block.Irrigated.Stand  48.66  32.34 
 

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
 Block.Irrigated.Stand.Fertilizer Identity Sigma2 86.36  20.35 
 

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  338.38  50 
 

Wald tests for fixed effects 

  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Irrigated 30.92 1 30.92 6.0  0.001 
Stand 7.57 2 3.78 12.0  0.053 
Fertilizer 22.90 2 11.45 36.0 <0.001 
Irrigated.Stand 11.82 2 5.91 12.0  0.016 
Irrigated.Fertilizer 11.04 2 5.52 36.0  0.008 
Stand.Fertilizer 3.53 4 0.88 36.0  0.484 
Irrigated.Stand.Fertilizer 2.72 4 0.68 36.0  0.611 
  
Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Irrigated.Stand.Fertilizer 2.72 4 0.68 36.0  0.611 
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Criss-cross/split-block/strip-plot design  
 

This design has various names in the literature, but the essential difference is that a second 

(possibly factorially structured) treatment is randomly applied across large areas of each 

block, generally at right angles to the first treatment. For example, this is one block from a 

factorial trial in which hybrids are allocated to four plots in the block, and a herbicide 

treatment (absent, or one of two rates) is applied to one-three block areas stripped across the 

plots.  

 

 Hybrid 4 Hybrid 1 Hybrid 6 Hybrid 5 Hybrid 3 Hybrid 2  

Block 1 

      Herbicide 

applied, rate 1 

      Herbicide not 

applied 

       Herbicide 

applied, rate 2 

 

A corresponding split-plot design has the herbicide treatment applied at random to the three 

small plots within each whole-plot. This more complex arrangement is often the only 

practical way of running the experiment, but comes at the cost of greater complexity in 

treatment comparisons. 

 

The levels of the herbicide treatment are also applied to large areas in each block. Thus, there 

are two types of whole-plots. There are now four strata: Block, Block.Hybrid, Block.Herbicide, 

and Block.Hybrid.Herbicide (an individual plots whose yields are measured). 

 

Example 16 Curt Lee (Agro-Tech, Inc., Velva, North Dakota, USA) kindly supplied data 

from the following experiment on sunflower (yield in lb/acre). Hybrid number 

shown in each block (V1 to V7). 

 
Block Herbicide V1 V2 V3 V4 V5 V6 V7 

1 check 810.6 1369.7 1830.8 1335.8 1563.6 1419.5 726.8 

 rate 1 776.8 1115.4 1497.0 1610.8 1637.0 1236.2 679.4 

 rate 2 595.2 1175.9 1260.0 1204.3 1465.2 1172.2 669.8 

         

  V6 V5 V4 V7 V2 V1 V3 

2 rate 1 1429.4 1152.8 1150.4 744.1 1099.0 735.2 1413.9 

 check 1517.5 1971.4 1737.6 643.4 916.2 608.3 1747.6 

 rate 2 1696.2 1467.0 1456.1 662.8 906.7 562.5 1417.2 

         

  V4 V2 V6 V7 V3 V1 V5 

3 rate 2 1383.6 1328.2 1301.4 671.6 1805.0 709.7 1536.6 

 check 1638.7 1250.8 1411.5 762.6 1827.9 601.4 1685.0 

 rate 1 1727.8 1201.4 1576.8 748.2 1340.2 670.8 2193.3 

         

  V4 V1 V7 V2 V5 V6 V3 

4 rate 1 1414.4 562.3 833.6 1085.4 1480.6 1323.9 1683.9 

 rate 2 1329.2 845.3 884.5 1069.9 1822.1 1277.1 1734.2 

 check 1318.4 760.4 842.6 1147.4 1729.5 1212.6 1450.5 
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It is common practice to place treatments for dose response experiments in sequential order 

(not randomized) in the first block of a field trial. This is used to accommodate farmer tours 

so they may walk through the trial and see the expected differences. There is a debate as to 

whether the demonstration block should be used as part of the research data, but we will do 

so here. 

 

Using ANOVA, the Treatment Structure is clearly Hybrid*Herbicide. 

 

The Block Structure is slightly more complex to formulate with a shortcut. The four strata 

mentioned above technically is all that is needed to set up the block structure, so: 
 

Block + Block.Hybrid + Block.Herbicide + Block.Hybrid.Herbicide 

 

which by the rules is abbreviated to Block/(Hybrid*Herbicide). 

 

Analysis of variance 

  
Variate: Yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 3  165289.  55096.     
  
Block.Hybrid stratum 
Hybrid 6  10890886.  1815148.  65.92 <.001 
Residual 18  495649.  27536.  0.83   
  
Block.Herbicide stratum 
Herbicide 2  111333.  55666.  1.22  0.360 
Residual 6  274730.  45788.  1.38   
  
Block.Hybrid.Herbicide stratum 
Hybrid.Herbicide 12  130254.  10855.  0.33  0.979 
Residual 36  1192168.  33116.     
  
Total 83  13260309.       
 

Message: the following units have large residuals. 
  
Block 2 Hybrid V6    205.  s.e.   77. 
  
Block 2 Hybrid V5 Herbicide Check    281.  s.e.   119. 
Block 2 Hybrid V5 Herbicide H1    -275.  s.e.   119. 
Block 3 Hybrid V3 Herbicide H1    -277.  s.e.   119. 
Block 3 Hybrid V5 Herbicide H1    355.  s.e.   119. 
 

Tables of means 

  
Grand mean  1231.  
  
 Hybrid  V1  V2  V3  V4  V5  V6  V7 
   687.  1139.  1584.  1442.  1642.  1381.  739. 
  
 Herbicide  Check  H1  H2 
   1280.  1219.  1193. 
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 Hybrid Herbicide  Check  H1  H2 
 V1   695.  686.  678. 
 V2   1171.  1125.  1120. 
 V3   1714.  1484.  1554. 
 V4   1508.  1476.  1343. 
 V5   1737.  1616.  1573. 
 V6   1390.  1392.  1362. 
 V7   744.  751.  722. 
  

Standard errors of differences of means 

Table Hybrid Herbicide Hybrid   
   Herbicide   
rep.  12  28  4   
s.e.d.  67.7  57.2  128.6   
d.f.  18  6  54.21   
Except when comparing means with the same level(s) of 
Hybrid    132.1   
d.f.    41.33   
Herbicide    125.0   
d.f.    53.62   
  

Least significant differences of means (5% level) 

Table Hybrid Herbicide Hybrid   
   Herbicide   
rep.  12  28  4   
l.s.d.  142.3  139.9  257.8   
d.f.  18  6  54.21   
Except when comparing means with the same level(s) of 
Hybrid    266.8   
d.f.    41.33   
Herbicide    250.7   
d.f.    53.62   
 

Estimated stratum variances 

Stratum variance  effective d.f.   variance component  
Block  55096.4  3.000  708.9 
Block.Hybrid  27536.0  18.000  -1859.9 
Block.Herbicide  45788.3  6.000  1810.4 
Block.Hybrid.Herbicide  33115.8  36.000  33115.8 

  

There are strongly significant differences (P < 0.001) among hybrids, but no interaction or 

herbicide effect. The interpretation is therefore straightforward. In the presence of a 

significant interaction, individual means will have to be compared using one of three l.s.d. 

values, none of which leads to a strict t test (notice the non-integer degrees of freedom). 

 

Notice also the negative Block.Hybrid stratum variance. When using LMM (REML) we would 

set that to be non-negative. The analysis is straightforward using the fixed and random 

models described above. 
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More complex field designs: a split-strip plot experiment 

 

This experiment was used by Schabenberger and Pierce (2001), page 599, to illustrate a 

REML analysis in SAS. Four soybean cultivars were used as whole-plots in each of four 

replicate blocks. Two row spacings (9”, 18”) were used, each applied at random to half of 

each whole-plot in a vertical direction. In addition, five target plant populations (60, 120, …, 

300 thousand per acre) were used, each applied at random to one-fifth of each whole-plot in a 

horizontal direction. The field plan therefore appears as follows. 

 

Example 17 Soybean example, from Schabenberger and Pierce (2001), page 599 

         

 AG4601 AG4701 AG3701 AG3601 

Block 1 

120 120 300 300 60 60 300 300 

300 300 240 240 240 240 60 60 

180 180 60 60 300 300 180 180 

240 240 120 120 180 180 120 120 

60 60 180 180 120 120 240 240 

 9 18 9 18 9 18 9 18 

         

 AG4601 AG3701 AG3601 AG4701 

Block 2 

180 180 180 180 240 240 120 120 

60 60 240 240 60 60 300 300 

240 240 120 120 120 120 60 60 

300 300 60 60 300 300 180 180 

120 120 300 300 180 180 240 240 

 9 18 9 18 18 9 18 9 

         

 AG3701 AG4701 AG3601 AG4601 

Block 3 

60 60 60 60 120 120 120 120 

180 180 180 180 240 240 60 60 

240 240 300 300 180 180 180 180 

300 300 120 120 60 60 300 300 

120 120 240 240 300 300 240 240 

 18 9 18 9 18 9 18 9 

         

 AG3701 AG4601 AG3601 AG4701 

Block 4 

60 60 120 120 60 60 120 120 

300 300 240 240 180 180 300 300 

240 240 300 300 120 120 180 180 

120 120 180 180 300 300 60 60 

180 180 60 60 240 240 240 240 

 18 9 9 18 18 9 9 18 

 

There are five strata in this experiment, and the block structure is the sum of these terms: 

1. Block stratum 

2. Block.Cultivar stratum 

3. Block.Cultivar.Row stratum 

4. Block.Cultivar.Plant stratum 

5. Block.Cultivar.Row.Plant stratum 
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The yields for the corresponding treatments are as follows. 

 

 Column 

Row 1 2 3 4 5 6 7 8 

1 19.5 26.2 26.4 32.5 23.4 21.3 29.4 32.0 

2 23.9 23.3 25.7 24.2 24.0 25.9 25.2 26.1 

3 22.0 21.9 19.0 16.3 27.6 28.1 31.5 29.1 

4 19.4 20.0 22.9 21.7 21.8 21.9 26.6 25.0 

5 19.0 15.8 26.0 27.9 25.9 22.0   

6 23.4 22.4   26.0 32.9 21.9 23.9 

7 20.6 19.7 26.9 25.9  27.9 31.4 26.5 

8 28.2 27.9 25.6 24.8 32.1 34.2 24.5 21.4 

9 25.9 28.5 23.0 23.3 26.5 40.2 28.9 30.5 

10 22.0 30.3 28.8 30.4 25.1 35.9 28.0 23.3 

11 17.8 22.3 16.5 19.3 22.0 28.9 23.6 21.6 

12 20.9 23.3 23.3 26.6 27.9 36.9 17.2 20.8 

13 26.5 26.2 28.0 30.4 27.0 32.1 24.9 24.6 

14 25.9 24.2 24.2 30.1 23.2 26.9 33.0 35.3 

15 22.8 19.0 22.0 26.9 26.9 34.5 30.7 25.3 

16 16.2 13.0 20.4 23.6 21.4 17.6 25.2 21.1 

17 26.5 25.4 21.0 24.4 23.3 26.9 26.7 26.1 

18 27.5 21.9 23.2 26.2 16.0 23.2 25.5 23.5 

19  17.9 24.4 21.7 21.3 27.1 14.7 15.6 

20 19.8 22.2 15.6 17.7 26.2 32.4 26.0 26.4 

 

There are six missing yields. GenStat will analyse the data via General Analysis of Variance. 

However, missing values are inserted and therefore F tests are inflated upwards. In addition, 

there may well be a change in variance across both row spacings and plant populations, and 

there may well be a better spatially correlated model to use, so it is preferable to use LMM 

(REML).  

 
Treatment Structure: Cultivar*RowSpacing*PlantPop 

 
Block Structure:

 Block+Block.Cultivar+Block.Cultivar.Row+Block.Cultivar.Plant+Block.Cultivar.Row.Plant 

 

Here is part of the ANOVA output. 

 

Analysis of variance 

  
Variate: Yield 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Block stratum 3    419.420  139.807  7.24   
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Block.Cultivar stratum 
Cultivar 3    531.821  177.274  9.18  0.004 
Residual 9    173.723  19.303     
  
Block.Cultivar.PlantPop stratum 
PlantPop 4    1173.923  293.481  33.72 <.001 
Cultivar.PlantPop 12    139.997  11.666  1.34  0.230 
Residual 46 (2)  400.406  8.704  2.20   
  
Block.Cultivar.RowsSpacing stratum 
RowsSpacing 1    38.125  38.125  3.47  0.087 
Cultivar.RowsSpacing 3    185.301  61.767  5.63  0.012 
Residual 12    131.682  10.974  2.77   
  
Block.Cultivar.PlantPop.RowsSpacing stratum 
PlantPop.RowsSpacing 4    18.891  4.723  1.19  0.327 
Cultivar.PlantPop.RowsSpacing 12    122.997  10.250  2.59  0.011 
Residual 44 (4)  174.146  3.958     
  
Total 153 (6)  3388.902       
  

Message: the following units have large residuals. 
  
Block 2 Cultivar AG3601 PlantPop 120.    4.51  s.e.   1.58 
Block 2 Cultivar AG3601 PlantPop 240.    -3.89  s.e.   1.58 
Block 3 Cultivar AG4601 PlantPop 300.    4.41  s.e.   1.58 
  
Block 1 Cultivar AG3601 RowsSpacing 9.    -2.02  s.e.   0.91 
Block 1 Cultivar AG3601 RowsSpacing 18.    2.02  s.e.   0.91 
  
Block 2 Cultivar AG3601 PlantPop 120. RowsSpacing 9.  -2.60  s.e.   1.04 
Block 2 Cultivar AG3601 PlantPop 120. RowsSpacing 18.  2.60  s.e.   1.04 
  

Estimated stratum variances 

Stratum variance  effective d.f.   variance component  
Block  139.807  3.000  3.013 
Block.Cultivar  19.303  9.000  0.358 
Block.Cultivar.PlantPop  8.704  46.000  2.373 
Block.Cultivar.RowsSpacing  10.974  12.000  1.403 
Block.Cultivar.PlantPop.RowsSpacing  3.958  44.000  3.958 

  

 

 

  

May well be due 

to a changing 

variance in the 

field. ANOVA 

assumes constant 

variance 
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LMM (REML) analysis 

 

There are four blocks, three fixed factors (4 cultivars × 2 row spacings × 4 target plant 

populations) in a five stratum layout. To obtain a better analysis than ANOVA, we use LMM 

(REML) with the following models: 

 
Fixed Model: Cultivar*PlantPop*RowSpace 
Random Model:

 Block+Block.Cultivar+Block.Cultivar.Row+Block.Cultivar.Plant+Block.Cultivar.Row.Plant 

 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Cultivar + PlantPop + RowsSpacing + Cultivar.PlantPop + 
Cultivar.RowsSpacing + PlantPop.RowsSpacing + Cultivar.PlantPop.RowsSpacing 
Random model: Block + Block.Cultivar + Block.Cultivar.PlantPop + 
Block.Cultivar.RowsSpacing + Block.Cultivar.PlantPop.RowsSpacing 
Number of units: 154 (6 units excluded due to zero weights or missing values) 
  
Block.Cultivar.PlantPop.RowsSpacing used as residual term 
  

Estimated variance components 

Random term component s.e. 
Block  3.037  2.896 
Block.Cultivar  0.452  1.054 
Block.Cultivar.PlantPop  2.421  1.017 
Block.Cultivar.RowsSpacing  1.245  0.868 
  

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
Block.Cultivar.PlantPop.RowsSpacing Identity Sigma2 3.927  0.835 
  

Approximate stratum variances 

Stratum variance effective d.f. 
Block  133.551  3.00 
Block.Cultivar  18.841  8.99 
Block.Cultivar.PlantPop  8.688  45.83 
Block.Cultivar.RowsSpacing  9.834  11.90 
Block.Cultivar.PlantPop.RowsSpacing 3.927  44.29 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  395.74  109 
 

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Cultivar 24.38 3 8.13 9.0  0.006 
RowSpacing 3.17 1 3.17 11.5  0.102 
PlantPop 131.80 4 32.95 46.2 <0.001 
Cultivar.RowSpacing 19.08 3 6.36 11.5  0.009 
Cultivar.PlantPop 14.47 12 1.21 46.3  0.308 
RowSpacing.PlantPop 4.19 4 1.05 45.3  0.393 
Cultivar.RowSpacing.PlantPop 31.20 12 2.60 45.5  0.010 
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The similarities are clear, with the differences between the two analyses (apart from P values) 

due to the fact that REML uses just the data and ignores missing values. 

 

However, we should investigate whether the variance changes with changing row spacing 

and changing plant population. Unfortunately, GenStat’s analysis failed to converge when we 

tried this. To make headway, we tried the following. 

 

The Block.Cultivar variance component is very small (0.452) and in fact can be deleted (the 

change in deviance is 395.96 - 395.74 = 0.22 with 1 d.f.). This is a simpler analysis which, 

apart from round-off error due to iteration with many parameters, produces the same variance 

components and close P values, with the exception that the individual Block and Block.Cultivar 

variance components of the first analysis (3.037 and 0.452) are replaced by a combined 

variance component of 3.465. This analysis is equivalent to treating the b × c plots (b blocks 

× c cultivars) as strips in the field into which the other factors are randomised (in two 

different ways). The analysis with changing variances for these factors did converge. 

 

Random Model: Strip+ Strip.PlantPop+ Strip*RowSpace+ Strip.PlantPop.RowSpace, or simply 

 Strip/(PlantPop*RowSpace) 
 

Correlated Error Terms: use Identity⊗Diagonal⊗Diagonal for Strip.PlantPop.RowSpace 

 

It turns out that that this more complex model is unnecessary, with a change in deviance of 

401.01 – 397.48 = 3.53 with 5 d.f. (3.53 would be not significant if there was just 1 d.f.). 

Statistically, the first LMM (REML) analysis is the one to use for decisions; biologically, the 

plants within plots are competing to the point that a common variance model appears 

adequate. 

 

The only point to add is that the design is unbalanced (with 6 missing values) and hence the P 

values depend on the order the factors are added to the model. As usual with unbalanced data, 

the P value to use for a factor should be the one obtained from an analysis with that factor 

entered last. 
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Spatial model: two-way design (in randomized blocks) plus a control plus extra 

replication of the control plus a covariate 

 

An experiment was laid out in four randomized blocks, designed to determine the 

effectiveness of four soil fumigants in keeping down the numbers of eelworms in the soil. 

The fumigants were chlorodinitrobenzene (CN), carbon disulphide jelly (CS) and two 

proprietary preparations, “Cymag” (CM) and “Seekay” (CK). Each fumigant was tested both 

in a single and double dose. There was a 9
th

 treatment, viz a control (no fumigant): four plots 

in each block were left untreated. The purpose was to supply an accurate standard against 

which the performance of the fumigants was measured. The fumigants were ploughed in 

during spring, after which a crop of oats was sown. Before and after harvest, 400g of soil was 

taken from each plot and the number of eelworm cysts counted. 

 

Generating a random design in GenStat prior to running the experiment 

 

Although there is a 4 × 2 factorial structure (Fumigant × Dose), once the control treatment is 

added the treatment structure is a bit more complex. Since the control is “no fumigant”, there 

is no way of having a single and double dose of “nothing”. So initially, we need to think of 

this as a one-way treatment design with (4×2+1) levels. We have 9 treatments, 8 of which are 

factorially structured. So in the Design menu we select One-way (in Randomized Blocks), set 

the number of treatments to 9, then go into Options. We set up a 1 df contrast for the treated 

versus untreated plots, and set up the 4 × 2 factorial structure in that menu. In addition, we 

can get GenStat to replicate the Control treatment 4 times (an additional 3 replicates per 

block): 

 

 



 Statistical Advisory & Training Service Pty Ltd 

116 

 

Notice that GenStat creates a factor (with 1s and 2s) to compare treated and untreated plots: a 

1 represents an untreated plot (throughout the spreadsheet) and 2 a treated plot. Then, in the 

Output window, the Treatment Structure is shown as Control_Treated/(Fumigant*Dose). 

Remember that the / operator has a higher priority than the * operator, so the parentheses are 

important in this structure, to force the / operator on all three terms in the factorial structure. 

This might be clearer with the following explanation. 

 

If you examine the other factor levels in the spreadsheet you will see that the combination of 

fumigant number (2, 3, 4, 5) and dose number (2 = single, say, and 3 = double) occurs only 

when the Control_Treated level is 2 (ie treated). Fumigant and dose treatments are “nested” 

inside the treated versus control contrast. The effect is that, in the ANOVA, apparent first-

order interactions (like Control_Treated.Fumigant) are actually main effects and the apparent 

second-order interaction (Control_Treated.Fumigant.Dose) is first-order interaction 

 

Analysis of variance 

  
Source of variation d.f. think of this component as: 
  
Blocks stratum 3 Blocks 
  
Blocks.Plots stratum 

Control_Treated 1 Control_Treated contrast 

Control_Treated.Fumigant 3 Fumigant main effect (for treated plots) 

Control_Treated.Dose 1  Dose main effect (for treated plots) 

Control_Treated.Fumigant.Dose 3  Fumigant.Dose interaction (for treated plots) 
Residual 36 

 

Example 18 Dose (1 = single, 2 = double) and type of fumigant, and eelworm counts 

(initial above final) in field position, from Cochran and Cox page 46 

 

0 2CK 1CN 1CM 2CM 2CS 2CK 0 

269 283 252 212 95 127 80 134 

466 280 398 386 199 166 142 590 

1CS 0 0 2CM 1CK 1CN 1CM 0 

138 100 197 263 107 89 41 74 

194 219 421 379 236 332 176 137 

2CS 1CK 0 2CN 0 0 2CN 1CS 

282 230 216 145 88 25 42 62 

372 256 708 304 356 212 308 221 

1CK 0 1CS 2CK 2CK 0 1CK 1CM 

124 211 194 222 193 209 109 153 

268 505 433 408 292 352 132 454 

0 2CN 2CS 1CN 0 2CN 2CS 0 

102 193 128 42 29 9 17 19 

363 561 311 222 254 92 28 106 

2CM 0 1CM 0 1CS 1CN 0 2CM 

162 191 107 67 23 19 44 48 

365 563 415 338 80 114 268 298 
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Had we used GenStat to design the trial, we need only add the two data columns (final and 

initial counts) and Run the analysis via the Spread menu. 

 

The analysis is performed in GenStat by initially setting up two factor columns: a Block factor 

with 4 levels and a soil Treatment factor with 9 levels. Then in Options, we set up a factor to 

identify treated and untreated plots, and two treatment factor columns, Dose (Single, Double) 

and Fumigant (CK=Seekay, CM=Cymag, CN=chlorodinitrobenzene, CS= carbon disulphide 

jelly). We have the added complication that the control is replicated 4 times in each block. 

 

 
 

There are some issues to sort out with data like these. 

 

 The data are not normally distributed. It is possible that they are Poisson, in which case 

the variance is the same as the mean, and if the means change then so must the variances. 

Hence a logistic regression might be preferable to ANOVA. Alternatively, we could 

transform the data to achieve approximate constant variance. For Poisson data the square 

root transformation used to be recommended. With large counts, a log transformation 

may be better: differences in means are then more easily back-transformed and 

interpreted. 

 

 The final counts may well depend on the initial worm counts: if the worms are not 

uniformly spread at the start of the experiment, then differences at the end may be 

misleading. We should incorporate initial counts as a covariate. If we log-transform final 

counts, then we should log-transform initial counts as well. 

 

 The Poisson distribution tends to a normal distribution with increasing mean count. Thus, 

we could use LMM (REML) assuming an approximate normal distribution with a 

changing variance, and possibly a spatially correlated error structure. Notice that the four 

blocks are formed as a 2 × 2 layout in the field, and in each block the plots are arranged in 

a 3×4 grid. If there is a gradient left to right and top to bottom across blocks, we might 

expect a gradient left to right and/or top to bottom within the blocks. What has become 
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known as a Row-Column analysis might then remove a trend in the field more 

successfully than the 2 × 2 block layout. 

 

We will look at some of these actions. Firstly, an analysis of final counts with initial counts 

as a covariate shows a distinct fanning in the standardised residuals: 

 

 
 

We therefore analyse the data log-transformed: 
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Analysis of log(final counts), with log(initial counts) as a covariate  

 

Analysis of variance (adjusted for covariate) 

  
Variate: log_Final_Count 
Covariate: log_Initial_Count 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
  
Block stratum 
Covariate 1  4.76145  4.76145  11.74    0.076 
Residual 2  0.81127  0.40563  4.23  4.58   
  
Block.*Units* stratum 
Treated_Control 1  1.16420  1.16420  12.13  1.00  0.001 
Treated_Control.Fumigant 3  2.08349  0.69450  7.24  0.92 <.001 
Treated_Control.Dose 1  0.04506  0.04506  0.47  0.99  0.498 
Treated_Control.Fumigant.Dose 3  0.31977  0.10659  1.11  1.00  0.358 
Covariate 1  5.21084  5.21084  54.31   <.001 
Residual 35  3.35793  0.09594    2.48   
  
Total 47  16.92526         
  

Message: the following units have large residuals. 
  
Block 3 *units* 11    -0.770 approx. s.e.   0.264 
Block 4 *units* 8    -0.654 approx. s.e.   0.264 
 

Tables of means (adjusted for covariate) 

  
Variate: log_Final_Count 
Covariate: log_Initial_Count 
  
Grand mean  5.582  
  
 Treated_Control  Control  Treated 
   5.805  5.470 
  rep.    16  32 
  
 Treated_Control Dose  Control  Double  Single 
 Control   5.805   
 Treated    5.432  5.508 
  
 Treated_Control Fumigant  Control  CK  CM  CN  CS 
 Control   5.805     
   rep.    16     
 Treated    5.195  5.667  5.798  5.220 
   rep.     8  8  8  8 
  
 Treated_Control Dose Fumigant  Control  CK  CM  CN  CS 
 Control Control   5.805     
    rep.    16     
 Treated Double    5.216  5.589  5.882  5.041 
    rep.     4  4  4  4 
  Single    5.174  5.745  5.713  5.399 
    rep.     4  4  4  4 
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Standard errors of differences of means 

  
Table Treated_Control  
 Treated_Control  
  Treated_Control  
   Treated_Control   
  Dose Fumigant Dose   
    Fumigant   
rep. unequal  16 unequal unequal   
d.f.  35  35  35  35   
s.e.d.    0.1596  0.2226  min.rep 
  0.0949  0.1097  0.1382  0.1760  max-min 
    0.1129X  0.1113X  max.rep 
  
(No comparisons in categories where s.e.d. marked with an X) 
  

Least significant differences of means (5% level) 

  
Table Treated_Control  
 Treated_Control  
  Treated_Control  
   Treated_Control   
  Dose Fumigant Dose   
    Fumigant   
rep. unequal  16 unequal unequal   
d.f.  35  35  35  35   
l.s.d.    0.3241  0.4520  min.rep 
  0.1927  0.2227  0.2806  0.3573  max-min 
    0.2291X  0.2260X  max.rep 
  
(No comparisons in categories where l.s.d. marked with an X) 
 

Estimated stratum variances (adjusted for covariate) 

  
Variate: log_Final_Count 
Covariate: log_Initial_Count 
  
Stratum variance  effective d.f.   variance component  
Block  0.3029  2.746  0.0173 
Block.*Units*  0.0953  35.254  0.0953 

 

Clearly initial counts go a long way to explaining differences in final counts. Incorporating 

the initial counts as a covariate: 

 

 is strongly significant (P<0.001); 

 

 reduces the Residual MS from 0.2380 to less than half that value, 0.0959; 

 

 more accurately tests whether treated plots have significantly lower eelworm cysts than 

control plots, taking initial counts into account (P=0.001); 

 

 detects that the type of fumigant is very important (P<0.001). 

 

A very important feature of interpreting means of log-transformed data should be mentioned. 

 



 Statistical Advisory & Training Service Pty Ltd 

121 

 

 The back-transformed mean of log-transformed data is the geometric mean of the original 

data. For log-normal data, the geometric mean is a much better estimate of a “typical” 

value than the arithmetic mean, since the importance of very large values in the 

calculation is greatly reduced. 

 

 The back-transformed difference in two means of log-transformed data is the ratio of the 

two geometric means of the original data. For example, for the carbon disulphide jelly 

(CS) fumigant, the effect of a single compared to a double dose is 5.399 – 5.041 = 0.358 

on the log-scale. This back-transforms to 1.43. Thus, a plot with a single dose of carbon 

disulphide jelly applied typically has 43% more eelworms cysts than a similar plot with a 

double dose. 

 

 The l.s.d. value for the comparison above is 0.4520 and this is based on 35 df for which 

tcrit is 2.030. The value to add and subtract to the difference in means above is 

2.030×0.4520 = 0.918. The 95% confidence interval on the log-scale is (-0.560, 1.276). 

Back-transforming the end points gives a confidence interval for the ratio of (0.571, 

3.581). Thus, while a plot with a single dose of carbon disulphide jelly applied typically 

has 43% more eelworms cysts than a similar plot with a double dose, we are only 95% 

confident that this ratio is between just over a half (0.571×), to a little more than three and 

a half times (3.581×). Other differences are treated similarly. 

 

Residuals plotted in field position 

There is still one other plot to check: a plot of the residuals in field position, with an 

accompanying contour plot. To obtain this plot, we need to supply two variates: the X-

coordinate and the Y-coordinate of each plot in field position. Imagine an X-Y coordinate 

system overlaying the experimental site (consisting of plots in a 6×8 layout) with the origin in 

the bottom left hand corner of the site. 

 

  0 2CK 1CN 1CM 2CM 2CS 2CK 0 

Y=6  269 283 252 212 95 127 80 134 

  466 280 398 386 199 166 142 590 

  1CS 0 0 2CM 1CK 1CN 1CM 0 

Y=5  138 100 197 263 107 89 41 74 

  194 219 421 379 236 332 176 137 

  2CS 1CK 0 2CN 0 0 2CN 1CS 

Y=4  282 230 216 145 88 25 42 62 

  372 256 708 304 356 212 308 221 

  1CK 0 1CS 2CK 2CK 0 1CK 1CM 

Y=3  124 211 194 222 193 209 109 153 

  268 505 433 408 292 352 132 454 

  0 2CN 2CS 1CN 0 2CN 2CS 0 

Y=2  102 193 128 42 29 9 17 19 

  363 561 311 222 254 92 28 106 

  2CM 0 1CM 0 1CS 1CN 0 2CM 

Y=1  162 191 107 67 23 19 44 48 

  365 563 415 338 80 114 268 298 

          

(0,0)  X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 
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The data are ordered down column 1 first, so we need to set up Y as (6, 5, 4, 3, 2, 1, 6, 5, …) 

and X as (1, 1, 1, 1, 1, 1), …, (8, 8, 8, 8, 8, 8) by right-clicking on each column and selecting 

Fill (with the Starting Value for Y being 6, the Ending Value 1 and Increment -1). 

 

 
 

. 

The residuals in field position are: 

 

 Final_stratum_residuals      

_['Column'] 1 2 3 4 5 6 7 8 

_['Row']         

6 -0.077 -0.027 -0.104 -0.066 -0.326 -0.130 -0.191 0.343 

5 -0.157 -0.253 0.004 -0.054 0.190 0.099 -0.114 -0.770 

4 0.434 0.047 0.470 -0.219 0.084 0.302 0.295 0.218 

3 0.087 -0.222 0.079 0.124 0.093 -0.356 -0.324 0.141 

2 -0.127 -0.142 0.350 -0.007 0.474 0.066 -0.654 -0.152 

1 -0.175 -0.055 0.039 0.048 -0.140 0.012 0.284 0.555 

 

These residuals should be random +/- across the field, since block effects are supposed to 

have dealt with any gradient in the field. Within each block the residuals will add to 0. Given 

that, deciding if the residuals are random in the field is fairly subjective. The accompanying 

contour plot smoothes over the individual residuals, but again, deciding if the light areas 

represent plots whose fitted counts are consistently larger than the observed counts is again 

subjective. 

 

We also should select Final 

stratum only, which uses 

the residuals in the final 

(plot) stratum. 

Produces contour plot. 
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LMM (REML) analysis of the spatial data 

 

Firstly, we reproduce the analysis of the eelworm Log(Final_Count) data. Recall that the 

ANOVA Treatment Structure is Treated_Control/(Dose*Fumigant) and in a separate box a 

covariate was defined. In LMM (REML), we move the covariate into the Fixed Model, which 

becomes Log_Initial_Count+Treated_Control/(Dose*Fumigant).  

 

The Random Model is Block+Block.Plot, or simply Block. Neither formulation allows us to use a 

correlation structure spatially. We will discuss this issue after the basic REML analysis is 

completed:  

 

REML variance components analysis 

  
Response variate: log_Final_Count 
Fixed model: Constant + log_Initial_Count + Treated_Control + 
Treated_Control.Fumigant + Treated_Control.Dose + Treated_Control.Fumigant.Dose 
Random model: Block 
Number of units: 48 
  
All covariates centred 
 

Estimated variance components 

Random term component s.e. 
Block  0.01730  0.02169 
 

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
Residual  Identity Sigma2 0.0953  0.02271 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  -30.98  36 
   

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Log_Initial_Count 61.54 1 61.54 25.4 <0.001 
Treated_Control 12.25 1 12.25 35.2  0.001 
Treated_Control.Dose 0.38 1 0.38 35.3  0.541 
Treated_Control.Fumigant 22.01 3 7.33 36.0 <0.001 
Treated_Control.Dose.Fumigant 3.33 3 1.11 35.3  0.358 
  
Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Log_Initial_Count 70.30 1 70.30 25.4 <0.001 
Treated_Control.Dose.Fumigant 3.33 3 1.11 35.3  0.358 

 

REML estimates of the block and error variances are the same as the stratum variances. Once 

a covariate is added, the main effects depend on the order the factors are entered into the 

model (just as they would in the ANOVA). To illustrate this, we have removed the two factor 

interaction from the fixed model. The change to the last part of the analysis is: 
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Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Log_Initial_Count 69.19 1 69.19 26.2 <0.001 
Treated_Control.Dose 0.46 1 0.46 38.3  0.503 
Treated_Control.Fumigant 21.81 3 7.27 39.1 <0.001 

 

How do we incorporate a spatial correlation for this experiment?  

 

Firstly, the field really consists of plots in a row by column layout. The original layout had 

four blocks in a 2×2 layout with each block consisting of 12 plots in a 3×4 layout. As 

hypothesized earlier, if there is a block effect, is it left to right across the field, or top to 

bottom, or both? If any of these, why is the gradient no reflected in the plots within a block? 

 

To investigate these possibilities, we inserted a factor labelled Y with 6 levels, and a factor 

labelled X with 8 levels. The Y factor is filled from 6 down to 1 in order for the field layout to 

mimic the X-Y coordinate system with the original in the bottom left hand corner of the field. 

 

The Random Model is then X.Y with at most an AR2 ⊗ AR2 spatially correlated model. We do 

not expect exactly the same scaled Wald statistics as before, since the assumed error structure 

is now different. 

 

 
 

We can use change in deviance to check whether we a less complex model is adequate. 

 

Model for X.Y deviance df Change in deviance Change in df P-value 

AR2.AR2 -34.32 33    

AR2.AR1 -34.17 34 0.15 1 0.699 

AR2.Identity -34.12 35 0.05 1 0.823 

AR1.Identity -33.76 36 0.36 1 0.549 

Identity.Identity -28.50 37 5.26 1 0.022 

 

It would appear that an AR1 correlated model left to right is what is required in this case. The 

analysis is as follows. 
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REML variance components analysis 

  
Response variate: log_Final_Count 
Fixed model: Constant + log_Initial_Count + Treated_Control + 
Treated_Control.Fumigant + Treated_Control.Dose + Treated_Control.Fumigant.Dose 
Random model: X.Y 
Number of units: 48 
  
X.Y used as residual term with covariance structure as below 
  

Covariance structures defined for random model 
Covariance structures defined within terms: 
  
Term Factor Model Order No. rows 
X.Y X Auto-regressive (+ scalar) 1 8 
 Y Identity 0 6 
  

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
X.Y Sigma2 0.113  0.0306 
 
 X AR(1) phi_1  0.4127  0.1753 
 Y Identity -         - - 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  -33.76  36 
   

Tests for fixed effects 

 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Log_Initial_Count 61.99 1 61.99 19.4 <0.001 
Treated_Control 17.34 1 17.34 25.3 <0.001 
Treated_Control.Fumigant 27.00 3 8.99 26.7 <0.001 
Treated_Control.Dose 0.92 1 0.92 32.7  0.344 
Treated_Control.Fumigant.Dose 3.29 3 1.10 29.4  0.367 
  
Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Log_Initial_Count 64.38 1 64.38 19.4 <0.001 
Treated_Control.Fumigant.Dose 3.29 3 1.10 29.4  0.367 

 

Dropping the interaction between fumigants and dose: 

Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Log_Initial_Count 63.95 1 63.95 20.7 <0.001 
Treated_Control.Fumigant 27.27 3 9.08 30.5 <0.001 
Treated_Control.Dose 0.90 1 0.90 36.7  0.349 

 

Means, all s.e.d. and l.s.d. values are suppressed: they can be saved into an Excel file. 

 

We could check whether an additional experimental error is necessary by adding ‘*Units*’ to 

the residual. In this case, the change is deviance is negligible (0.15 on 1 df). 
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Multi-site experiments 

 

Example 19 Twelve strains of soybeans were compared in separate randomized blocks at 

three locations in North Carolina. Data from Steel and Torrie page 399, 400 

 

 Plymouth Clayton Clinton 

Variety BL 1 BL 2 BL 3 BL 1 BL 2 BL 3 BL 1 BL 2 BL 3 

Tracy 1307 1365 1542 1178 1089 960 1583 1841 1464 

Centennial 1425 1475 1276 1187 1180 1235 1713 1684 1378 

N72-137 1289 1671 1420 1451 1177 1723 1369 1608 1647 

N72-3058 1250 1202 1407 1318 1012 990 1547 1647 1603 

N72-3148 1546 1489 1724 1345 1335 1303 1622 1801 1929 

R73-81 1344 1197 1319 1175 1064 1158 1800 1787 1520 

D74-7741 1280 1260 1605 1111 1111 1099 1820 1521 1851 

N73-693 1583 1503 1303 1388 1214 1222 1464 1607 1642 

N73-877 1656 1371 1107 1254 1249 1135 1775 1513 1570 

N73-882 1398 1497 1583 1179 1247 1096 1673 1507 1390 

N73-1102 1586 1423 1524 1345 1265 1178 1894 1547 1751 

R75-12 911 1202 1012 1136 1161 1004 1422 1393 1342 

 

The first thing to decide is whether the 

variation at each site is consistent. Three 

separate RCBD analyses produced the 

following Residual MS estimates. These 

are obtained by clicking in the 

spreadsheet, selecting Restrict/Filter > To 

Groups (factor levels). Select the Location 

factor and each level with Replace with 

new. 

 

Location df Residual  MS 

Plymouth 22 24149 

Clayton 22 12124 

Clinton 22 22851 

Average 66 19708 

 

Do we have any right to combine the three 

estimates into a pooled estimate with 66 

df? Since we assume normal data and 

independent experiments across locations, these can be tested by Bartlett’s variance 

homogeneity test, (Chi-square 2.90 on 2 degrees of freedom: probability 0.234). 

 

Next, locations are really included to make better breeding choices, so interest lies in 

interpreting the Strain.Location interaction. Technically, locations are fixed sites of interest and 

each site is unreplicated (as are blocks at each location). Hence, to place Location in a top-

level stratum of its own (with no P value for Location) we place in the Block Structure rather 
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than in the Treatment Structure, simply as a device. (In the LMM (REML) section for this 

example we assume Strain and Strain.Location are both random factors.)  

 

Next, block 1 at one location is not the same as block 1 at a different location. Hence we need 

to combine blocks within locations, thereby obtaining (3-1)×3 = 6 df. 

 

The Block Structure we would recommend is then  

Location+Block.Location+Block.Location.Strain (GenStat allows the final stratum to be omitted) 

 

This is the analysis that such a general ANOVA produces: 

 

Analysis of variance 

 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Location stratum 2  3113626.  1556813.  134.87   
  
Location.Block stratum 6  69256.  11543.  0.59   
  
Location.Block.*Units* stratum 
Strain 11  925090.  84099.  4.27 <.001 
Location.Strain 22  532900.  24223.  1.23  0.256 
Residual 66  1300723.  19708.     
  
Total 107  5941596.       
  

… 

Tables of means 

  
Variate: Yield 
  
Grand mean  1403.  
  
 Strain  Centennial  D74-7741  N72-137  N72-3058  N72-3148  N73-1102 
   1395.  1406.  1484.  1331.  1566.  1501. 
   
 Strain  N73-693  N73-877  N73-882  R73-81  R75-12  Tracy 
   1436.  1403.  1397.  1374.  1176.  1370. 
  
 Location Strain  Centennial  D74-7741  N72-137  N72-3058  N72-3148 
 Plymouth   1405.  1395.  1473.  1299.  1599. 
 Clayton   1402.  1308.  1652.  1308.  1529. 
 Clinton   1378.  1517.  1327.  1385.  1570. 
   
 Location Strain  N73-1102  N73-693  N73-877  N73-882  R73-81 
 Plymouth   1524.  1476.  1391.  1506.  1300. 
 Clayton   1464.  1476.  1414.  1375.  1334. 
 Clinton   1517.  1357.  1405.  1309.  1488. 
   
 Location Strain  R75-12  Tracy       
 Plymouth   1055.  1418.       
 Clayton   1302.  1277.       
 Clinton   1172.  1415.       
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Standard errors of differences of means 

Table Strain Location   
  Strain   
rep.  9  3   
d.f.  66  66   
s.e.d.  66.2  114.6   
  

Least significant differences of means (5% level) 

Table Strain Location   
  Strain   
rep.  9  3   
d.f.  66  66   
l.s.d.  132.1  228.9   
  

Estimated stratum variances 

Stratum variance  effective d.f.   variance component  
Location  1556813.0  2.000  42924.2 
Location.Block  11542.7  6.000  -680.4 
Location.Block.*Units*  19707.9  66.000  19707.9  

 

Notice that the Location.Block MS (11543) is unexpectedly smaller than the Residual MS 

(19708) which gives rise to the negative variance component above. When then data are 

analysed using LMM (REML), it is advisable to force a zero bound for this variance 

component. 

 

The Location MS is much larger than the Residual MS, indicating large variation in the overall 

mean yields over the three locations. Differences in means between the strains, however, are 

consistent across these locations (P=0.256). 

 

 

LMM (REML) analysis assuming fixed locations and random strains 

 

The block and treatment structures used in the ANOVA were: 

 

Treatment Structure: Strain+Location+Location.Strain 

Block Structure: Location.Block 

 

Placing Location in the Block Structure was purely a device to prevent the unreplicated factor 

Location from having a P-value printed in the ANOVA. The same analysis is produced when 

Location is placed in the Treatment Structure, but no stratum variance is obtained then 

(GenStat treats factors in the Treatment Structure as fixed terms). 

 

Generally, when a factor is regarded as random then any interaction involving that factor is 

also random. With the Steel and Torrie data it is unclear whether the three locations, or the 

twelve strains, were randomly chosen or were of specific interest. It is common that Strains, 

and hence Strains.Location, are random, and that is what we will assume (with Location fixed). 

What often occurs, moreover, is that the residual variances differ across locations. This was 

tested on page 102 via Bartlett’s test of homogeneity of variance (and found to be not 

significant). Here we test it by change in deviance. 
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Firstly, we test whether the residual variances at each location are the same: 
 

Fixed Model: Location 

Random Model: Strain + Location.Strain + Location.Block + Location.Strain.Block 

 (Location.Block constrained to be positive) 

 

Model Deviance d.f. χχχχ2
 P-value 

Identity for Location in Location.Strain.Block 1172.04 101  

Diagonal for Location in Location.Strain.Block 1170.32 99  

Change 1.72 2 0.423 

 

So, the simpler model with a constant residual variance at each location suffices (P = 0.423). 

The estimated variances (below) at each location are slightly different to those used in 

Bartlett’s test in the design section, because in this analysis we constrained the Location.Block 

term to be non-negative: 

 

Location Variance from individual ANOVAs Variance from combined REML 

Plymouth 24149 21778 ± 5896 

Clayton 12124 13591 ± 3882 

Clinton 22851 21217 ± 5818 

 

The output from the constant variance model is as follows. 

 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Location 
Random model: Strain + Strain.Location + Location.Block + Strain.Location.Block 
Number of units: 108 
  
Strain.Location.Block used as residual term 
 

Estimated variance components 

Random term component s.e. 
Strain  6653.  4066. 
Strain.Location  1732.  2654. 
Location.Block  0. bound 
  

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
 Strain.Location.Block Identity Sigma2 19027.  3171. 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  1172.04  101 
 

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Location 128.54 2 64.27 22.0 <0.001 
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Clearly there are yield differences across locations (P<0.001), but this is neither surprising 

nor of interest. As a breeding trial, we are more interested in strain differences. However, we 

need to determine firstly whether there are genotype × environment interactions. 

 

To test whether the random Location.Strain interaction is significant is equivalent to testing 

whether the Location.Strain variance is 0. The estimate from the analysis above is 1732 ± 

2564. However, we can only test this hypothesis using change in deviance, with the new 

model omitting the random term to be tested. 

 

Model Deviance d.f. P-value 

Including Location.Strain  1172.04 101  

Excluding Location.Strain 1172.55 102  

Change 0.51 1 0.475 

 

This result indicates that strain differences are consistent across locations (P = 0.475).  

 

Are there any differences among the strains themselves? Since Strain is also a random effect, 

we can only decide this by change in deviance. We take the no interaction model and drop 

Strain: 

 

Model Deviance d.f. χχχχ2
 P-value 

Including Strain  1172.55 102  

Excluding Strain 1186.87 103  

Change 14.32 1 <0.001 

 

Strain differences are strongly significant (P<0.001). The final analysis we use excludes the 

Location.Strain interaction but includes the Block.Location random effect to emphasise the 

combined nature of the analysis. 

 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + Location 
Random model: Strain + Block.Location 
Number of units: 108 
  

Estimated variance components 

Random term component s.e. 
Strain  7095.  3998. 
Block.Location  0. bound 
  

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
Residual  Identity Sigma2 20243.  2953. 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  1172.55  102 
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Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Location 153.81 2 76.90 94.0 <0.001 

 

 

Multiple Experiments/Meta Experiments (REML) menu 

 

A combined analysis of separate experiments can be obtained using the meta analysis menu 

in one step. Note that this menu assumes you want separate variances for each experimental 

site: 

 

 
 

 

BLUP estimates of strain means 

 

The next question is how to estimate strain effects or strain means. GenStat provides Best 

Linear Unbiased Predictor (BLUP) means and/or effects for random terms using the Save 

menu. Before looking at these, what are they? For the following discussion we are indebted 

to Keith Boldman (Global Data Analysis Methods, Monsanto Company, Iowa). 

 

A BLUP estimate applies to random effects only. The Strain effect technically has a mean of 

zero, and a variance of 2

sσ  say. However, we really wish to predict the genotype mean for 

each strain. Write the current model (omitting the random term Location.Block which has a 

zero variance and hence can be dropped from the model) as  

 

 Yield = µ + stain effect + Error 

 

At one extreme, we could use the i
th

 sample mean as an estimate of (µ + stain effect) for the 

i
th

 strain. This is appropriate when Strain is fixed, and is known as the Best Linear Unbiased 

Estimator (BLUE). This estimate is unbiased but may have a relatively large variance.  
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At the other extreme, with no genetic variance, the grand mean is the appropriate estimator 

for every strain. For our data, we have a genetic variance 2

sσ  which is significantly different 

to 0. 

 

A BLUP mean is a compromise, or trade-off, between these two estimators. It is calculated 

by shrinking each sample strain mean somewhat toward the grand mean. The degree of 

shrinkage depends on the estimates of the genetic and environmental variance. The shrinkage 

ratio, h
2
, is given by 

 

 
2

2

2 2

s

s

genetic var iance
h

phenotypic var iance / r

σ
= =

σ + σ
 

 

where r is the number of replicates of each strain and σ2
 is the residual variance. For our data, 

h
2
 = 7095/(7095+20243/9) = 0.76. This ratio is applied to the deviations (differences between 

strain sample means and the grand mean). This reduces the various deviations, giving rise to 

BLUP effects and hence BLUP means. They are consequently “shrunk” toward the grand 

mean. 

 

The BLUP effects and BLUP means were captured using Save in GenStat. Select to display 

the possible random terms. Double click on the random term whose BLUPS you wish to save 

(in this case Strain). The reduction in the following table is h
2×(deviation from grand mean): 

this reduction is added to the grand mean to produce the BLUP mean. 

 

Strain 

Sample 

mean 

deviation from 

grand mean h
2××××deviation 

BLUP 

Mean 

ranking 

on sample 

mean 

ranking 

on BLUP 

mean 

Centennial 1395 -8.47 -6.43 1397 8 8 

D74-7741 1406 3.19 2.43 1406 5 5 

N72-137 1484 80.64 61.23 1464 3 3 

N72-3058 1331 -72.58 -55.11 1348 11 11 

N72-3148 1566 162.75 123.57 1527 1 1 

N73-1102 1501 98.19 74.56 1478 2 2 

N73-693 1436 32.97 25.04 1428 4 4 

N73-877 1403 0.08 0.06 1403 6 6 

N73-882 1397 -6.58 -5.00 1398 7 7 

R73-81 1374 -29.47 -22.38 1381 9 9 

R75-12 1176 -227.36 -172.63 1231 12 12 

Tracy 1370 -33.36 -25.33 1378 10 10 

 

In this example, no strain has a different ranking on the basis of sample and BLUP means. 
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CRD Repeated Measures Example 

 

Calves were randomly allocated to receive treatment A or B (30 calves per treatment). The 

weight of each calf was recorded 11 times (0, 2, 4, ..., 18, 19 wks). The first 3 calves in each 

treatment are as follows. Data are from Diggle (1983). 

 

Example 20 Weights of calves from birth to 19 weeks  

 

Treatment A Treatment B 

Calf: Calf: 

Week 1 2 3 ... 1 2 3 ... 

0 233 231 232 210 230 226 

2 224 238 237 215 240 233 

4 245 260 245 230 258 248 

6 258 273 265 244 277 277 

8 271 290 285 259 277 297 

10 287 300 298 266 293 313 

12 287 311 304 277 300 322 

14 287 313 319 292 323 340 

16 290 317 317 292 327 354 

18 293 321 334 290 340 365 

19 297 326 329 264 343 362 

 

The trend in mean calf weights is similar for the two treatments, although mean calf weights 

for treatment B are consistently below those for treatment A until about week 13. 

 

 
 

There is considerable variation in the weights at any week, and there is a suggestion that the 

variation increases over time (see the following plot for individual calf weights  for treatment 

A). The means and variances over time are as follows. The variance at week 19 is four to six 

times larger than at birth. 
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Week 

0 2 4 6 8 10 12 14 16 18 19 

Treatment means 

A 226 230 247 266 281 295 305 313 315 324 325 

B 225 228 244 263 276 290 299 318 320 327 320 

variances 

A 106 155 165 185 243 284 307 341 389 470 445 

B 105 108 147 198 218 250 248 234 287 405 599 

 

 
 

There are several ways you could analyse these data, but we will use the data to demonstrate 

various uses of REML for repeated measurements data. 

 

Firstly, an old-fashioned ANOVA of the data would use time as a split-treatment in a split-

plot experiment, with calves randomly assigned to one of two whole-plot treatments – thus, a 

CRD split-plot experiment. Of course this assumes constant variance over time (which 

appears an incorrect assumption). A split-plot also assumes that the split-units are also 

randomised, which for time is not possible. Since for each calf its weight at each time is in 

the same whole-plot, we have seen with a randomised block that this is equivalent to a 

uniform correlation structure over time. 

 

Here is the split-plot output, ignoring any problems with the assumptions: 

 

Analysis of variance 

 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Calf.Treatment stratum 
Treatment 1  455.01  455.01  0.20  0.658 
Residual 58  133127.50  2295.30  35.37   
  
Calf.Treatment.Week stratum 
Week 10  846141.94  84614.19  1303.90 <.001 
Treatment.Week 10  2264.16  226.42  3.49 <.001 
Residual 580  37637.90  64.89     
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Total 659  1019626.51       
... 

Estimated stratum variances 

Stratum variance  effective d.f.   variance component  
Calf.Treatment  2295.302  58.000  202.764 
Calf.Treatment.Week  64.893  580.000  64.893 

 

Before the advent of modern computers, statisticians developed tests of whether a uniform 

correlation structure (labelled “symmetry of the covariance matrix”) is appropriate over time. 

When this assumption failed, an adjustment to the ANOVA is made by modifying the 

degrees of freedom in the split-plot part of the ANOVA. GenStat offers this in the Stats > 

Repeated Measurements > Analysis of Variance menu. 

 

Box's tests for symmetry of the covariance matrix 

  
Chi-square 599.67 on 64 degrees of freedom: probability <0.001 
 
F-test 9.35 on 64 and 31776 degrees of freedom: probability <0.001 
 
  

Greenhouse-Geisser epsilon 

  
epsilon 0.2416 
  

Analysis of variance 

  
Variate: Week0,Week2,Week4,Week6,Week8,Week10,Week12,Week14,Week16,Week18,Week19 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Subject stratum 
Treatment 1  455.01  455.01  0.20  0.658 
Residual 58  133127.50  2295.30  35.37   
  
Subject.Time stratum 
d.f. correction factor 0.2416 
Time 10  846141.94  84614.19  1303.90 <.001 
Time.Treatment 10  2264.16  226.42  3.49  0.025 
Residual 580  37637.90  64.89     
  
Total 659  1019626.51       
  
(d.f. are multiplied by the correction factors before calculating F probabilities) 

 

 

Again, this approach assumes constant variance, which for plants and animals growing over 

time is unlikely.  

 

Repeated Measurements > Correlated Models by REML menu 

 

There is a menu in GenStat which analyses CRD repeated measures data using REML. The 

data can be arranged in separate columns for separate times, or stacked. 
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Enter the columns of data (if unstacked). The Time Points are for labels in the output. The 

default correlation structure is uniform, which as we have seen is equivalent to a CRD split-

plot with calf weights uniformly correlated over time. Therefore for this correlation structure 

it does not matter whether the time points are equally spaced or not. 

 

REML variance components analysis 

  
Response variate: _Data 
Fixed model: Constant + %_Time + %_Treatment + %_Time.%_Treatment 
Random model: %_subject.%_Time 
Number of units: 660 
  
%_subject.%_Time used as residual term with covariance structure as below 
  
Sparse algorithm with AI optimisation 
  
  

Covariance structures defined for random model 
  
Covariance structures defined within terms: 
  
Term Factor Model Order No. rows 
%_subject.%_Time %_subject Identity 1 60 
 %_Time Uniform 1 11 
  

Residual variance model 
Term Factor Model(order) Parameter Estimate s.e. 
%_subject.%_Time   Sigma2 267.7  38.9 
 
 %_subject Identity -         - - 
 %_Time Uniform theta1  0.7576  0.0368 
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Deviance: -2*Log-Likelihood 

  
 Deviance d.f. 
  3581.85  636 
   
Note: deviance omits constants which depend on fixed model fitted. 
  

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
%_Time 13039.05 10 1303.90 580.0  <0.001 
%_Treatment 0.20 1 0.20 58.0  0.658 
%_Time.%_Treatment 34.89 10 3.49 580.0  <0.001 

 

As can be seen: 

 

 The Wald F statistics and df are the same as those from the CRD split-plot ANOVA. 

 

 The estimate Sigma2 (267.7) is the total variance in the experiment. In the earlier 

ANOVA we selected to display stratum variances, of which there were two: 

Calf.Treatment (202.764) and Calf.Treatment.Week (64.893) so the total variance is 

202.764+64.893 = 267.657. 

 

 The whole-plot error variance can be reconstructed from the total variance and from 

the estimate of the uniform correlation (theta1), as we have seen before: 

0.7576×267.657 = 202.8. 

 

We saw that the variance was much larger at week 19 compared to at birth. REML allows the 

variance to change across time (Allow heterogeneity across time). The two models are compared 

using change in deviance: 

 

Deviance d.f. 

Constant variance model 3581.85 636 

Changing variance model 3421.05 626 

Change 160.8 10 <0.001 

 

Clearly the changing variance model is statistically better: 

 

Covariance structures defined for random model 
  
Covariance structures defined within terms: 
  
Term Factor Model Order No. rows 
%_subject.%_Time %_subject Identity 0 60 
 %_Time Uniform (het) 1 11 
  

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
%_subject.%_Time Sigma2 1.000 fixed 
 %_subject Identity -         - - 
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 %_Time Uniform het theta1  0.7956  0.0357 
     Scale row 1  139.0  29.9 
     Scale row 2  141.6  28.5 
     Scale row 3  154.1  29.8 
     Scale row 4  179.7  34.9 
     Scale row 5  213.3  41.4 
     Scale row 6  242.0  46.5 
     Scale row 7  264.4  52.6 
     Scale row 8  267.5  52.3 
     Scale row 9  321.0  62.9 
     Scale row 10  451.5  91.4 
     Scale row 11  577.3  119.9 
  

Deviance: -2*Log-Likelihood 

  
 Deviance d.f. 
  3421.05  626 
   
Note: deviance omits constants which depend on fixed model fitted. 
  

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
%_Time 8910.47 10 868.65 234.2  <0.001 
%_Treatment 4.99 1 4.99 167.1  0.027 
%_Time.%_Treatment 35.53 10 3.46 234.2  <0.001 

  

These variances do increase with time, but they are not very close to the sample variances in 

all cases. By way of comparison, the average variances across treatments at each time are as 

follows: 

 

0 2 4 6 8 10 12 14 16 18 19 

105.4 131.8 156.2 191.7 230.3 267.1 277.4 287.4 338.1 437.4 521.6 

 

The heterogeneity assumption says that the change in variance is consistent across treatments; 

possibly it should change with treatment. More probably, the uniform correlation assumption 

does not hold. Weights closer together are almost certainly more highly correlated than 

weights distant in time. 

 

 

Unstructured, autoregressive/power and antedependence models 

 

A simple model to explore is an AR1 structure (the autocorrelation model that applied to the 

beaver data). However, an AR1 model needs equally spaced time points. When you untick 

this option, AR1 and AR2 structures are no longer available. The available choices are: 

 

 Antedependence order 1 or order 2. From GenStat’s Statistics Guide:  

“Ante-dependence analysis can be regarded as a generalization of multivariate 

analysis of variance that allows for the patterns of covariances that typify repeated 

measurements. The variates observed at the successive times are said to have an 

antedependence structure of order r if each ith variate (i>r), given the preceding r, is 

independent of all further preceding variates (Gabriel 1961, 1962).” (See page 1051 
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for additional explanations.) 

 

 Power model (City-block metric) 

If r is the correlation between weights two units of time apart, then r
t
 is the correlation 

between weights t units of time apart. 

 

 Unstructured 
The whole variance-covariance matrix is estimated. It has no particular structure. It is 

equivalent to a multivariate CRD analysis with the weights at various times as the 

variates. 

 

We commence with the unstructured model. For 11 time points there will be an 11 × 11 

covariance matrix to print out. This involves 55 different parameter estimates. GenStat uses v 

(for variance or covariance) with the row number first and the column number last. So v_11 

is the top corner element of the variance matrix (row 1, column 1) and is the variance at time 

1; v_12 is the covariance between times 1 and 2; ... to v_1111 which is the bottom corner 

element of the variance matrix (row 11, column 11) and hence is the variance at time 11. 

 
 %_Time Unstructured v_11  105.4  19.6 
     v_21  98.77  20.19 
     v_22  131.8  24.5 

etc to 
     v_1111  521.6  96.9 

 

If you select the option Covariance Model, GenStat will rearrange these as a matrix, at least 

for the first 10 rows; we have added the final row below: 

 

1 105.4 

2 98.8 131.8 

3 102.4 132.2 156.2 

4 95.2 136.8 160.3 191.7 

5 101.6 142.7 166.9 198.0 230.3 

6 104.6 147.0 175.1 210.5 237.7 267.1 

7 96.5 132.5 162.8 199.6 227.6 257.5 277.4 

8 100.0 141.1 169.2 204.4 231.9 261.4 265.4 287.4 

9 107.0 143.8 171.8 209.9 244.8 277.7 285.4 300.5 338.1 

10 102.2 147.0 178.8 218.3 250.4 288.1 287.9 309.0 348.0 437.4 

11 107.0 144.8 184.2 227.2 250.4 291.3 297.2 313.3 353.9 452.3 521.6 

 1 2 3 4 5 6 7 8 9 10 11 
 

You can confirm from the table on the previous page that the diagonal elements are simply 

the average variances across time for the points. 

 

To convert these to a correlation matrix requires diving the covariances (the off-diagonal 

elements) by the appropriate two standard deviations. Thus, the correlation between the 

weights at weeks 0 and 2 is 98.8/SQRT(105.4×131.8) = 0.838. The full 11×11 unstructured 

correlation matrix for the weights over time is as follows: 
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Unstructured correlation matrix: 

1 0.838 0.798 0.670 0.652 0.623 0.564 0.575 0.567 0.476 0.456 

0.838 1 0.921 0.861 0.819 0.784 0.693 0.725 0.681 0.612 0.552 

0.798 0.921 1 0.926 0.880 0.858 0.782 0.799 0.748 0.684 0.646 

0.670 0.861 0.926 1 0.942 0.930 0.866 0.871 0.825 0.754 0.719 

0.652 0.819 0.880 0.942 1 0.958 0.900 0.901 0.877 0.789 0.722 

0.623 0.784 0.858 0.930 0.958 1 0.946 0.943 0.924 0.843 0.781 

0.564 0.693 0.782 0.866 0.900 0.946 1 0.940 0.932 0.827 0.781 

0.575 0.725 0.799 0.871 0.901 0.943 0.940 1 0.964 0.872 0.809 

0.567 0.681 0.748 0.825 0.877 0.924 0.932 0.964 1 0.905 0.843 

0.476 0.612 0.684 0.754 0.789 0.843 0.827 0.872 0.905 1 0.947 

0.456 0.552 0.646 0.719 0.722 0.781 0.781 0.809 0.843 0.947 1 

 

Would a power model be a good approximation to this? The correlations alongside 1 in the 

unstructured correlation matrix are the lag-1 correlations (i.e. the correlations between the 

weights at each time and the next time); they range from 0.838 to 0.964. Suppose that 0.9 is 

the overall lag-1 correlation. Then the lag-2 correlation would be 0.9
2
 = 0.81 under a power 

model, and so on. This is the pattern: 

 

Lag 1 2 3 4 5 6 7 8 9 10 

corr 0.90 0.81 0.73 0.66 0.59 0.53 0.48 0.43 0.39 0.35 

 

The patterns are not too dissimilar, perhaps the individual lag-correlations in the matrix tend 

to be higher than the patterned power structure. The actual estimated power model (with no 

additional uniform correlation with subjects, but with changing variances over time) is as 

follows; phi_1 is the overall estimated lag-1 correlation: 

 

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
%_subject.%_Time   Sigma2 1.000 fixed 
 
 %_subject Identity -         - - 
 %_Time Power(1) het phi_1  0.9583  0.0061 
     Scale row 1  133.9  23.6 
     Scale row 2  154.5  26.5 
     Scale row 3  155.0  25.7 
     Scale row 4  166.5  27.2 
     Scale row 5  180.5  28.9 
     Scale row 6  200.7  32.0 
     Scale row 7  210.8  34.0 
     Scale row 8  225.2  36.1 
     Scale row 9  291.8  47.2 
     Scale row 10  429.7  70.4 
     Scale row 11  524.3  86.3 

 

The variance estimates (in bold) are not all close to the average sample variances (in order 

105.4, 131.8, 156.2, 191.7, 230.3, 267.1, 277.4, 287.4, 338.1, 437.4, 521.6), so perhaps the 

model is not a good fit. Since the power structure is a special case of the unstructured model 

(the 55 individual correlations are replaced by (powers of) a single correlation, we use the 

change in deviance to determine the adequacy of fit. The df will be 55-1 = 54: 
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Deviance d.f. P value 

Power correlation model with changing variance 3043.48 626 

Unstructured correlation model 2938.73 572 

Change 104.75 54 <0.001 

 

We conclude that the power structure is not an adequate fit. 

 

The antedependence model is designed to be close to the unstructured model, and involves 

far fewer parameters. Firstly, we check whether order 1 or order 2 is necessary: 

 

Deviance d.f. P value 

Antedependence order 1 3005.67 617 

Antedependence order 2 2977.86 608 

Change 27.81 9 0.001 

 

The order 2 model is statistically better than the order 1 model. What do these look like? 

 

The covariance matrix for the antedependence structure, C say, is defined as a function of a 

diagonal matrix D and a matrix U which has elements all zero apart from the diagonal 

elements (which are all 1) and, for the order 1 structure, one off diagonal element to the right 

alongside each diagonal element. For an order 2 structure, U has two off diagonal elements to 

the right alongside each diagonal element. Specifically, C = (U D-1 UT)-1
. GenStat produces 

the inverses of the diagonal elements of D (which are labelled dinv_1, dinv_2, ...) and the 

non-zero elements of U. 

 

Hence, for an order 1 structure over t time points, there are t+(t-1) = 2t-1 parameters to 

estimate (so 21 with 11 time points); for an order 2 structure over t time points, there are  

t+(t-1)+(t-2) = 3(t-1) parameters to estimate (so 30 with 11 time points). 

 

The antedependence structure is a special case of the unstructured model, for which there are 

t(t+1)/2 parameters to estimate (so 66 with 11 time points). The change in deviance for 

comparing an unstructured model with an antedependence order 2 structure will therefore 

have (t-2)(t-3)/2 df (so 36 for 11 time points): 

 

Deviance d.f. P value 

Antedependence order 2 2977.86 608 

unstructured 2938.73 572 

Change 39.13 36 0.331 

 

The antedependence order 2 model, with 36 fewer parameters, is not a significantly worse 

model than the unstructured model (P=0.331). However the power model (with variances 

changing across time) involves ever fewer parameters: 11 time variances and 1 correlation 

coefficient for a unit time difference. Since the power model is not a special case of the 

antedependence model, we cannot use change in deviance to compare them. GenStat offers as 

an option two coefficients that can be used in this situation. 
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Akaike's information criterion (AIC) and Schwartz information coefficient (SC) 
 

These coefficients are both related to the deviance. As stated, they do not represent a formal 

test of two competing models, they are simply tools for model selection. The lower their 

value the less information is lost and the better the model is. GenStat offers these as options 

in the LMM (REML) menu. 

 

The AIC and SC values for the power model with changing variances are 4243.89 and 

4301.87; for the antedependence order 2 model they are 4320.50 and 4329.41, which are 

larger by 76.61 and 27.54 units respectively. The difference is largely because the power 

model involves fewer parameters, so is a trade off between the deviance and the number of 

parameters fitted. On the AIC and SC alone the power model appears the better choice. 

However, the change in deviance suggested the power model is not a good fit to the 

unstructured model, whereas the antedependence order 2 model is. The output for this model 

is: 

 

REML variance components analysis 

  
Response variate: _Data 
Fixed model: Constant + %_Time + %_Treatment + %_Time.%_Treatment 
Random model: %_subject.%_Time 
Number of units: 660 
%_subject.%_Time used as residual term with covariance structure as below 
  

Covariance structures defined for random model 
  
Covariance structures defined within terms: 
Term Factor Model Order No. rows 
%_subject.%_Time %_subject Identity 0 60 
 %_Time Antedependence 1 11 
 

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
%_subject.%_Time   Sigma2 1.000 fixed 
 
 %_subject Identity -         - - 
 %_Time Antedependence(1)  
   dinv_1  0.009486  0.001778 
     dinv_2  0.02549  0.00479 
     dinv_3  0.04245  0.00790 
     dinv_4  0.03680  0.00684 
     dinv_5  0.03874  0.00723 
     dinv_6  0.04578  0.00850 
     dinv_7  0.03439  0.00643 
     dinv_8  0.02994  0.00558 
     dinv_9  0.04200  0.00780 
     dinv_10  0.01263  0.00235 
     dinv_11  0.01855  0.00344 
     u_12  -0.9370  0.0809 
     u_23  -1.003  0.056 
     u_34  -1.026  0.056 
     u_45  -1.033  0.049 
     u_56  -1.032  0.041 
     u_67  -0.9642  0.0446 
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     u_78  -0.9569  0.0473 
     u_89  -1.046  0.039 
     u_910  -1.029  0.064 
     u_1011  -1.034  0.047 
  

Estimated covariance models 

  
Variance of data estimated in form:  
  
V(y) = Sigma2.R 
  
where: V(y) is variance matrix of data 
       Sigma2 is the residual variance 
       R is the residual covariance matrix 
.... 
  
Factor: %_Time 
Model:  Antedependence           
  
Covariance matrix (first 10 rows only): 
  
  
 1  105.4                   
 2  98.8  131.8                 
 3  99.1  132.2  156.2               
 4  101.7  135.7  160.3  191.7             
 5  105.0  140.1  165.6  198.0  230.3           
 6  108.4  144.6  170.8  204.3  237.7  267.1         
 7  104.5  139.4  164.7  197.0  229.2  257.5  277.4       
 8  100.0  133.4  157.6  188.5  219.3  246.4  265.4  287.4     
 9  104.6  139.5  164.8  197.1  229.3  257.7  277.6  300.5  338.1   
 10  107.6  143.6  169.7  202.9  236.0  265.2  285.7  309.3  348.0  437.4 
   1  2  3  4  5  6  7  8  9  10 
  

Deviance: -2*Log-Likelihood 

 Deviance d.f. 
  3005.67  617 
   
Note: deviance omits constants which depend on fixed model fitted. 
 

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
%_Time 3095.09 10 296.89 164.0  <0.001 
%_Treatment 0.02 1 0.02 59.7  0.898 
%_Time.%_Treatment 66.90 10 6.42 164.0  <0.001 

 

One of the benefits of choosing an appropriate variance matrix over time is the appropriate 

precision for comparing treatment means at any time, or the difference in means for a 

particular treatment over time. A split-plot in time analysis assumes constant variance. For 

such an analysis, the same (inappropriate) sed value is used. Here are the means and sed 

values from the antedependence order 2 model: 
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Week A B diff sed 

0 226.20 224.60 1.60 2.65 

2 230.33 227.90 2.43 2.96 

4 246.87 243.53 3.33 3.23 

6 265.63 262.50 3.13 3.57 

8 281.17 276.43 4.73 3.92 

10 294.87 290.13 4.73 4.22 

12 304.73 299.23 5.50 4.30 

14 312.87 317.67 -4.80 4.38 

16 315.13 319.67 -4.53 4.75 

18 324.07 326.93 -2.87 5.40 

19 325.47 320.47 5.00 5.90 

 

Finally, we compare the variance matrix across time for the antedependence order 2 and 

unstructured models. You can see the variance estimates are the sample variances across time 

for both models. The covariances are identical to lag-2 (apart from the occasional round off 

error), and are not too different beyond lag-2. 

 

antedependence order 2 variance matrix: 

1 105.4 

2 98.8 131.8 

3 102.4 132.2 156.1 

4 105.8 136.8 160.3 191.7 

5 110.1 142.4 166.9 198.0 230.3 

6 116.8 151.1 177.1 210.5 237.7 267.1 

7 112.1 145.0 169.9 202.0 227.5 257.5 277.3 

8 114.1 147.5 172.9 205.6 231.9 261.4 265.4 287.4 

9 121.0 156.4 183.3 218.0 245.7 277.3 285.4 300.5 338.0 

10 124.4 160.9 188.6 224.2 252.8 285.2 293.6 309.0 348.0 437.4 

11 126.6 163.7 191.9 228.1 257.2 290.1 298.7 314.4 354.0 452.4 521.9 

 1 2 3 4 5 6 7 8 9 10 11 

 

 

unstructured variance matrix: 

1 105.4 

2 98.8 131.8 

3 102.4 132.2 156.2 

4 95.2 136.8 160.3 191.7 

5 101.6 142.7 166.9 198.0 230.3 

6 104.6 147.0 175.1 210.5 237.7 267.1 

7 96.5 132.5 162.8 199.6 227.6 257.5 277.4 

8 100.0 141.1 169.2 204.4 231.9 261.4 265.4 287.4 

9 107.0 143.8 171.8 209.9 244.8 277.7 285.4 300.5 338.1 

10 102.2 147.0 178.8 218.3 250.4 288.1 287.9 309.0 348.0 437.4 

11 107.0 144.8 184.2 227.2 250.4 291.3 297.2 313.3 353.9 452.3 521.6 

 1 2 3 4 5 6 7 8 9 10 11 
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RCBD repeated measures example - experiments repeated annually 

 

Snedecor and Cochran presented an analysis of asparagus yields taken from an experiment in 

which planting occurred in 1929 and cuttings commenced in 1930. Data are available for four 

years from the same plots. This was a randomized block, with four plots in each block. The 

four plots corresponded to cuttings taken on June 1 each year, but for three of the plots 

additional cuttings were taken (but not analysed). The intent of the analysis was to detect if 

repeated cutting of asparagus affected plant vigour. 

 

Example 21 Asparagus yields from four annual cuttings, from Snedecor and Cochran, page 

330-2. 

Year 

Block Cutting ceased 1930 1931 1932 1933 

1 

Jun-01 230 324 512 399 

Jun-15 212 415 584 386 

Jul-01 183 320 456 255 

Jul-15 148 246 304 144 

2 

Jun-01 216 317 448 361 

Jun-15 190 296 471 280 

Jul-01 186 295 387 187 

Jul-15 126 201 289 83 

3 

Jun-01 219 357 496 344 

Jun-15 151 278 399 254 

Jul-01 177 298 427 239 

Jul-15 107 192 271 90 

4 

Jun-01 200 362 540 381 

Jun-15 150 336 485 279 

Jul-01 209 328 462 244 

Jul-15 168 226 312 168 

 

Clearly, the same plot is repeatedly measured, and hence yields for the same plot are most 

likely correlated across years. 

 

Snedecor and Cochran overcame that problem by (a) an analysis of total annual yields, and 

(b) an analysis of the linear yield component over years (using multipliers -3, -1, 1, 3), which 

was (then) a way of overcoming the correlated nature of the data. 

 

If you believe that the correlation structure over time was uniform, a split-plot RCBD would 

be appropriate (and would be the correct analysis if only two years were involved). This 

analysis is: 
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Analysis of variance 

  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 3  30169.6  10056.5  4.14   
  
Block.CuttingTime stratum 
CuttingTime 3  241376.6  80458.9  33.12 <.001 
Residual 9  21860.8  2429.0  5.65   
  
Block.CuttingTime.Year stratum 
Year 3  518721.9  172907.3  401.94 <.001 
CuttingTime.Year 9  51177.5  5686.4  13.22 <.001 
Residual 36  15486.6  430.2     
  
Total 63  878793.0       
  

Estimated stratum variances 

Stratum variance  effective d.f.   variance component  
Block  10056.54  3.000  476.72 
Block.CuttingTime  2428.97  9.000  499.70 
Block.CuttingTime.Year  430.18  36.000  430.18 

 

 

LMM (REML) analysis 

 

The analysis of the asparagus yields is an example of the need for a temporal correlation 

model for plots measured annually. Since the years were equally spaced, AR, antedependence 

and unstructured models are potential correlation models. 

 

A split-plot in time analysis can be set up in REML as follows. 

 

The random model for a general split-plot is  

Block/Whole_Plot/Split_Plot 

which expands to 

Block  + Block.Whole_Plot + Block.Whole_Plot.Split_Plot 

 

Recall that for a randomised block with blocks random, the random model is 

Block+Block.Plot 

 

and this can be replaced by Block.Plot with a uniform correlation structure for the plots. 

 

In the split-plot case, the split-plot treatment (Year) will be explored for an appropriate 

correlation structure. So by analogy with the RCB case, we work backwards and replace the 

last two random terms (Block.Whole_Plot + Block.Whole_Plot.Split_Plot) by a single term 

Block.Whole_Plot.Split_Plot with a uniform correlation structure on the split-plot units.  

 

For the example, CuttingTime is the whole-plot treatment and Year the split-plot treatment, 

and we can use these factors in lieu of the unit names in the random model. Hence the split-

plot ANOVA should be equivalent to a REML analysis with: 

 
Fixed Model: Year*Cuttings 
Random Model: Block+Block.Cuttings.Year with a uniform correlation structure on Year. 
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REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + CuttingTime + Year + CuttingTime.Year 
Random model: Block + Block.CuttingTime.Year 
Number of units: 64 
  
Block.CuttingTime.Year used as residual term with covariance structure as below 
  
Sparse algorithm with AI optimisation 
  
  

Covariance structures defined for random model 
  
Covariance structures defined within terms: 
  
Term Factor Model Order No. rows 
Block.CuttingTime.Year Block Identity 1 4 
 CuttingTime Identity 0 4 
 Year Uniform 1 4 
  

Estimated variance components 

  
Random term component s.e. 
Block  476.7  518.2 
 

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
Block.CuttingTime.Year   Sigma2 929.9  296.2 
 
 Block Identity -         - - 
 CuttingTime Identity -         - - 
 Year Uniform theta1  0.5374  0.1592 
 

Deviance: -2*Log-Likelihood 

  
 Deviance d.f. 
  386.30  45 
  

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
CuttingTime 99.37 3 33.12 9.0  <0.001 
Year 1205.81 3 401.94 36.0  <0.001 
CuttingTime.Year 118.97 9 13.22 36.0  <0.001 

 

You can see that 

 

 the F statistics and df are identical to those from the ANOVA. 
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 The estimate of the variance of the random block effect (476.7) is the same as the 

Block stratum variance from the ANOVA. 

 

 The estimate Sigma2 (929.9) is the total variance of the two terms replaced in the 

REML with a uniform structure, ie the whole-plot error and the split-plot error, From 

the ANOVA, the two stratum variances were 499.70 and 430.18 respectively, and 

these add to 929.88. 

 

 The estimate of the Block variance in an RCB was reconstructed by multiplying the 

uniform correlation by the total variance, so here the whole-plot error is simply 

0.5374×929.88 = 499.71. This is the same as the whole-plot stratum variance from the 

ANOVA. 

 

Years are equally spaced, and changing to an AR1 correlation structure over years (plus a 

random block effect) produces a similar size deviance (compared to uniform; we can’t test 

the deviances for these two models as one is not a special case of the other). An AR2 

structure is certainly unnecessary for these data (P=0.498). With an AR1 model, there also 

appears to be no need to have the variance change across years (P=0.440): 

 

Correlation structure for Year Deviance d.f.  

Uniform  386.30 45  

AR1 382.77 45  

AR1 + changing variance (years) 380.07 42 Change=2.70, df=3, P=0.440 

AR2 382.31 44 Change=0.46, df=1, P=0.498 

 

When we try and fit an unstructured model over time the estimate of the block variance 

becomes negative; when constrained to be positive the deviance is 370.10 with 37 df. Hence, 

the AR1 model is a statistically acceptable model in comparison to the unstructured model 

(change in deviance = 12.67 on 8 df, P=0.124) and involves 8 (or 7 if Block is omitted) fewer 

parameters. 

 

The antedependence order 2 model is not a significantly better model than the order 1 model 

(P=0.827) on the basis of the following change in deviance: 

 

Correlation structure for Year Deviance d.f. 

antedependence 1 374.61 40 

antedependence 2 374.23 38 

change 0.38 2 

 

Finally, the antedependence order 1 model is also a statistically acceptable model in 

comparison to the unstructured model (change in deviance = 4.51 on 3 df, P=0.211). The 

AR1 model says that the asparagus yields are directly related to the previous year’s yield, and 

indirectly related to the yields in earlier years. The antedependence order 1 model says that 

the yield is dependent on the previous year’s yield, but given that yield, it is uncorrelated with 

the yields from previous years. It allows the variance to change across years as well. 

 

Here is the full output from the antedependence model. The superiority of this model 

compared to the split-plot in time (uniform) model lies in the precision for comparing the 
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cutting time means within and across years. For the latter model, the sed for a comparison 

between a particular cutting time mean for any two years is 14.7; for comparing any two 

cutting time means in a particular year, or across years, is 21.6. For the antedependence order 

1 model, the 14.7 common sed is replaced by a range of sed values whose minimum is 11.2 

and whose maximum is 20.1; the 21.6 sed is replaced by a range of sed values whose 

minimum is 11.2 and whose maximum is 30.73. The maximum value applies to a comparison 

with 1932, a year in which both yields and the estimated variance were high. 

 

REML variance components analysis 

  
Response variate: Yield 
Fixed model: Constant + CuttingTime + Year + CuttingTime.Year 
Random model: Block + Block.CuttingTime.Year 
Number of units: 64 
  
Block.CuttingTime.Year used as residual term with covariance structure as below 
  

Covariance structures defined for random model 
  
Covariance structures defined within terms: 
  
Term Factor Model Order No. rows 
Block.CuttingTime.Year Block Identity 0 4 
 CuttingTime Identity 0 4 
 Year Antedependence 1 4 
 

Estimated variance components 

  
Random term component s.e. 
Block  86.000  155.907 
 

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
Block.CuttingTime.Year  Sigma2 1.000 fixed 
 
 Block Identity -         - - 
 CuttingTime Identity -         - - 
 Year Antedependence(1)  
   dinv_1  0.002333  0.001056 
     dinv_2  0.001157  0.000480 
     dinv_3  0.002082  0.000852 
     dinv_4  0.002011  0.000830 
     u_12  -0.7185  0.4525 
     u_23  -1.139  0.196 
     u_34  -0.6786  0.1554 
 

Estimated covariance models 

  
Variance of data estimated in form:  
  
V(y) = sZZ' + Sigma2.R 
  
where: V(y) is variance matrix of data 
       s is the variance component for the random term 
       Z is the incidence matrix for the random term 
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       Sigma2 is the residual variance 
       R is the residual covariance matrix 
  
Random Term: Block 
  
Scalar s: 86.00  
 
Residual term: Block.CuttingTime.Year 
Sigma2: 1.000  
  
R uses direct product construction 
  
Factor: Block 
Model:  Identity ( 4 rows) 
  
Factor: CuttingTime 
Model:  Identity ( 4 rows) 
  
Factor: Year 
Model:  Antedependence           
  

1 0.45 0.39 0.31 

0.45 1 0.86 0.69 

0.39 0.86 1 0.80 

0.31 0.69 0.80 1 
 
Covariance matrix: 
  
 1  428.7       
 2  308.0  1085.2     
 3  350.9  1236.3  1888.8   
 4  238.1  839.0  1281.8  1367.2 
   1  2  3  4 
 

Deviance: -2*Log-Likelihood 

  
 Deviance d.f. 
  374.61  40 
   
Note: deviance omits constants which depend on fixed model fitted. 
  

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
CuttingTime 50.38 3 16.79 11.0  <0.001 
Year 936.91 3 275.77 13.4  <0.001 
CuttingTime.Year 79.34 9 7.51 16.9  <0.001 
  

Table of predicted means for Constant 
  
  290.6    Standard error:  8.57 
  

Table of predicted means for CuttingTime 

 
 CuttingTime Jun_01 Jun_15 Jul_01 Jul_15 
  356.6 322.9 290.8 192.2  

The correlation matrix among the 4 times is: 
 

1 1 0.45 0.39 0.31 

2 0.45 1 0.86 0.69 

3 0.39 0.86 1 0.80 

4 0.31 0.69 0.80 1 
  1  2  3  4 
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Standard errors of differences between pairs 
            
 CuttingTime Jun_01 1   *       
 CuttingTime Jun_15 2  20.4   *     
 CuttingTime Jul_01 3  20.4  20.4   *   
 CuttingTime Jul_15 4  20.4  20.4  20.4   * 
     1  2  3  4 
  
Standard error of differences: 20.37  
 

Table of predicted means for Year 

  
 Year 1930 1931 1932 1933 
  179.5 299.4 427.7 255.9 
 
Standard errors of differences between pairs 
  
            
 Year 1930  1   *       
 Year 1931  2  7.5   *     
 Year 1932  3  10.0  5.6   *   
 Year 1933  4  9.1  7.0  6.6   * 
     1  2  3  4 
  
Standard errors of differences 
  
Average:  7.626 
Maximum:  10.05 
Minimum:  5.598 
  
Average variance of differences: 60.43  
 

Table of predicted means for CuttingTime.Year 

  
  
 Year 1930 1931 1932 1933 
 CuttingTime   
 Jun_01 216.2 340.0 499.0 371.2 
 Jun_15 175.8 331.2 484.8 299.8 
 Jul_01 188.7 310.2 433.0 231.2 
 Jul_15 137.3 216.2 294.0 121.2 
  
Standard errors of differences between pairs 
  
              
 CuttingTime Jun_01.Year 1930  1   *         
 CuttingTime Jun_01.Year 1931  2  15.0   *       
 CuttingTime Jun_01.Year 1932  3  20.1  11.2   *     
 CuttingTime Jun_01.Year 1933  4  18.2  13.9  13.2   *   
 CuttingTime Jun_15.Year 1930  5  14.6  19.5  24.1  21.2   * 
 CuttingTime Jun_15.Year 1931  6  19.5  23.3  27.3  24.8  15.0 
 CuttingTime Jun_15.Year 1932  7  24.1  27.3  30.7  28.5  20.1 
 CuttingTime Jun_15.Year 1933  8  21.2  24.8  28.5  26.1  18.2 
 CuttingTime Jul_01.Year 1930  9  14.6  19.5  24.1  21.2  14.6 
 CuttingTime Jul_01.Year 1931  10  19.5  23.3  27.3  24.8  19.5 
 CuttingTime Jul_01.Year 1932  11  24.1  27.3  30.7  28.5  24.1 
 CuttingTime Jul_01.Year 1933  12  21.2  24.8  28.5  26.1  21.2 
 CuttingTime Jul_15.Year 1930  13  14.6  19.5  24.1  21.2  14.6 
 CuttingTime Jul_15.Year 1931  14  19.5  23.3  27.3  24.8  19.5 
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 CuttingTime Jul_15.Year 1932  15  24.1  27.3  30.7  28.5  24.1 
 CuttingTime Jul_15.Year 1933  16  21.2  24.8  28.5  26.1  21.2 
     1  2  3  4  5 
  
              
 CuttingTime Jun_15.Year 1931  6   *         
 CuttingTime Jun_15.Year 1932  7  11.2   *       
 CuttingTime Jun_15.Year 1933  8  13.9  13.2   *     
 CuttingTime Jul_01.Year 1930  9  19.5  24.1  21.2   *   
 CuttingTime Jul_01.Year 1931  10  23.3  27.3  24.8  15.0   * 
 CuttingTime Jul_01.Year 1932  11  27.3  30.7  28.5  20.1  11.2 
 CuttingTime Jul_01.Year 1933  12  24.8  28.5  26.1  18.2  13.9 
 CuttingTime Jul_15.Year 1930  13  19.5  24.1  21.2  14.6  19.5 
 CuttingTime Jul_15.Year 1931  14  23.3  27.3  24.8  19.5  23.3 
 CuttingTime Jul_15.Year 1932  15  27.3  30.7  28.5  24.1  27.3 
 CuttingTime Jul_15.Year 1933  16  24.8  28.5  26.1  21.2  24.8 
     6  7  8  9  10 
  
              
 CuttingTime Jul_01.Year 1932  11   *         
 CuttingTime Jul_01.Year 1933  12  13.2   *       
 CuttingTime Jul_15.Year 1930  13  24.1  21.2   *     
 CuttingTime Jul_15.Year 1931  14  27.3  24.8  15.0   *   
 CuttingTime Jul_15.Year 1932  15  30.7  28.5  20.1  11.2   * 
 CuttingTime Jul_15.Year 1933  16  28.5  26.1  18.2  13.9  13.2 
     11  12  13  14  15 
  
      
 CuttingTime Jul_15.Year 1933  16   * 
     16 
  
Standard errors of differences 
  
Average:  22.32 
Maximum:  30.73 
Minimum:  11.20 
  
Average variance of differences: 525.3  
  
Standard error of differences for same level of factor: 
  
 CuttingTime Year 
   
Average:  15.25  23.70 
   
Maximum:  20.10  30.73 
   
Minimum:  11.20  14.64 
   
Average variance of differences: 
   
  241.7  596.2  
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Multivariate Linear Mixed Models for CRD 

 

REML offers an alternative to multivariate analysis of variance (MANOVA) which becomes 

very useful for unbalanced data. To illustrate the two techniques we use the calf weights 

measured 11 times over the first 19 weeks from birth. We used these data previously to 

illustrate repeated measurements analysis when we assumed unstructured model (i.e. no 

particular structure for the variances and correlations) over time. This is essentially the 

method GenStat uses when selecting Stats > Mixed Models (REML) > Multivariate Linear Mixed 

Models. The data need to be unstacked for this menu. Basically, the test is comparing the 

entire set of mean weights across time for the two treatments is a single analysis. 

 

There are two choices to make for the Covariance model across data. The first, Identity, simply 

assumes that the time variates are uncorrelated; a different variance will be fitted for each 

variate, hence the variance matrix fitted is Diagonal. The second will be shown to produce one 

of the MANOVA test statistics. As usual, we use change in deviance to decide between the 

two models. 

 

 
 

 

Model Deviance d.f. P value 

Correlated times (Unstructured) 4211.4 627 

Uncorrelated times (Identity) 2938.7 572 

Change 1272.7 55 <0.001 

 

There is overwhelming evidence that the data are correlated over time. The variances and 

covariances from this analysis were presented previously, as well as the reconstructed 

correlation matrix. (Remember that GenStat labels these v_11, v_12, v_22, ... in a long list in 

the output. Choose to show the Covariance Model to have them printed out in (lower 

triangular) matrix form, at least for up to 10 rows. 
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Full covariance matrix across the 11 time points: 

 

1 105.4 

2 98.8 131.8 

3 102.4 132.2 156.2 

4 95.2 136.8 160.3 191.7 

5 101.6 142.7 166.9 198.0 230.3 

6 104.6 147.0 175.1 210.5 237.7 267.1 

7 96.5 132.5 162.8 199.6 227.6 257.5 277.4 

8 100.0 141.1 169.2 204.4 231.9 261.4 265.4 287.4 

9 107.0 143.8 171.8 209.9 244.8 277.7 285.4 300.5 338.1 

10 102.2 147.0 178.8 218.3 250.4 288.1 287.9 309.0 348.0 437.4 

11 107.0 144.8 184.2 227.2 250.4 291.3 297.2 313.3 353.9 452.3 521.6 

 1 2 3 4 5 6 7 8 9 10 11 
 

 

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
%_variable 36243.52 11 2726.79 48.0  <0.001 
%_variable.%_Treatment 86.07 11 6.48 48.0  <0.001 

 

There is a highly significant difference between the treatment A set of calf weight means and 

the treatment B set (P<0.001). The means, all s.e.d. and l.s.d. values are suppressed in this 

section. 

 

 

Multivariate analysis of variance (MANOVA) for CRD 
 

The MANOVA is obtained in Stats > Multivariate Analysis > MANOVA. In Options you can 

choose to have the sums of squares and products matrices printed out – these are the variance 

matrices for treatments and residual. You can also choose to have separate ANOVAs printed 

(AOV Table). This is appropriate if the data are uncorrelated over time, and essentially 

performs all the ANOVA in one step. 

 

Firstly, a univariate ANOVA constructs an F statistic as the ratio (Treatment MS)/(Residual 

MS), or a scalar multiple of (Treatment SS)/(Residual SS). The problem confronting the early 

statisticians is how to generalize a ratio to MANOVA in which both Treatment SS and 

Residual SS are matrices: on the diagonal are sums of squares, off the diagonal are sums of 

products, so we re-label SS as SSP to reflect this. The denominator in the univariate F 

becomes an inverse of a matrix for a multivariate set of data, so the test is based on some 

aspect of (Treatment SSP)(Residual SSP)
-1

. The MANOVA test statics are all named after 

statisticians who developed the different mathematical functions of this matrix expression. 

These tests are all based on some function of eigenvalues. 
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For the calf data the sums of squares and products matrices are as follows: 

 

SSP matrices 

  

Treatment 
 

(Lower triangular part of each matrix is shown here, for times 0, 2, 4, …, 18, 19): 

 

0 38.4 

          2 58.4 88.8 

         4 80 121.7 166.7 

        6 75.2 114.4 156.7 147.3 

       8 113.6 172.8 236.7 222.5 336.1 

      10 113.6 172.8 236.7 222.5 336.1 336.1 

     12 132 200.8 275 258.5 390.5 390.5 453.8 

    14 -115.2 -175.2 -240 -225.6 -340.8 -340.8 -396 345.6 

   16 -108.8 -165.5 -226.7 -213.1 -321.9 -321.9 -374 326.4 308.3 

  18 -68.8 -104.6 -143.3 -134.7 -203.5 -203.5 -236.5 206.4 194.9 123.3 

 19 120 182.5 250 235 355 355 412.5 -360 -340 -215 375 

 

0 2 4 6 8 10 12 14 16 18 19 

 
Degree of freedom: 1 
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Residual 
 

0 6114 

          2 5729 7643 

         4 5938 7667 9057 

        6 5521 7933 9296 11116 

       8 5891 8276 9681 11483 13360 

      10 6065 8527 10157 12210 13785 15491 

     12 5595 7686 9440 11575 13200 14936 16087 

    14 5800 8182 9815 11856 13451 15161 15394 16668 

   16 6205 8343 9967 12176 14200 16108 16554 17430 19608 

  18 5929 8525 10372 12663 14524 16712 16697 17925 20183 25368 

 19 6205 8400 10686 13180 14524 16897 17235 18169 20529 26232 30253 

 

0 2 4 6 8 10 12 14 16 18 19 

 
Degree of freedom: 58 

 

 

If you look at say the first ANOVA, you will see that the diagonal terms of the matrices are 

simply the Treatment SS (38.4) and Residual SS (6114). 

 

Analysis of variance 

  
Variate: Week0 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
_units_ stratum 
Treatment 1  38.4  38.4  0.36  0.548 
Residual 58  6114.0  105.4     
Total 59  6152.4       

 

Test statistics for MANOVA 

  
 Term d.f. Wilk's lambda Rao F n.d.f. d.d.f.  F prob. 
 Treatment  1  0.4026  6.48  11  48  0.000 
  
 Term d.f. Pillai-Bartlett Roy's maximum Lawley-Hotelling 
   trace root test trace 
 Treatment  1  0.5974  0.5974  1.484 

 

 Notice that the Rao F statistic of 6.48 is the same as the test of treatment means across 

variates in the Multivariate REML: 

 

%_variable.%_Treatment 86.07 11 6.48 48.0  <0.001 

 

The means and s.e.d. values are printed out as an option, but not l.s.d. values. MANOVA is 

also restricted to balanced data, so the REML approach has the advantage. 
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Multivariate analysis of variance (MANOVA) for a blocked design 
We consider again the asparagus yields from four annual cuttings of plots treated with one of 

four cutting methods set out in four randomized blocks (Snedecor and Cochran, page 330-2). 

 

The MANOVA is a simple extension of the CRD MANOVA – we simply set up the blocking 

structure using the unstacked data: 

 

 
 

In Version 12 of GenStat there is a warning which we can ignore, as it does not affect tests or 

P values: 

 

Multivariate analysis of variance 

  

SSP matrices 

 

Block  stratum 

  

Warning 11, code UF 2, statement 239 in procedure MANOVA 
  
Residual SSP matrix for Block  singular.  
 

Residual 
  
          
 %1930  1800    
 %1931  2761  6904   
 %1932  4080  9801  14037  
 %1933  3860  9212  12994  12520 
  %1930 %1931 %1932 %1933 
 
Degree of freedom: 3 
 
  

Block._units_  stratum 
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CuttingsCeased 

          
 %1930  12941    
 %1931  19944  38778   
 %1932  32417  63546  104969  
 %1933  38142  68034  114393  135867 
  %1930 %1931 %1932 %1933 
 
Degree of freedom: 3 
  

Residual 
  
          
 %1930  4144    
 %1931  2458  8363   
 %1932  3020  8000  12316  
 %1933  4012  4099  6004  7433 
  %1930 %1931 %1932 %1933 
 
Degree of freedom: 9 
  

Test statistics 

 

Block._units_  stratum 

  
 Term d.f. Wilk's lambda Rao F n.d.f. d.d.f.  F prob. 
 CuttingsCeased  3  0.009994  6.33  12  16  0.000 
  
 Term d.f. Pillai-Bartlett Roy's maximum Lawley-Hotelling 
   trace root test trace 
 CuttingsCeased  3  1.971  0.9586  25.24 

 

 

Again, notice that the Rao F test is highly significant (P<0.001) – remember we never use 

0.000 in a report. This variance ratio should be the same as the multivariate REML using an 

unstructured correlation matrix over time. Unfortunately, current versions of GenStat have a 

problem estimating the variance matrix - the default steps in the iteration routine are too large 

to lead to convergence - so we are unable to demonstrate the equivalence of the two analyses 

at this stage. 

 

When setting up multivariate REML for an RCBD, use 

Fixed Model: Time/Treatment 

Random Model: Block.Time+Units.Time 

 

and, if Time is unstructured for both random terms, the Rao F statistic of MANOVA will be 

the same as the Wald F test for Treatment.Time in the multivariate REML. 

 

In the MANOVA output, the diagonal elements of the sum of squares and products matrices 

are simply the Block, Treatment and Residual sums of squares from the univariate ANOVAS.  

For example, here is the ANOVA for 1930. The three sums of squares are the leading 

element of the three matrices for Block, CuttingsCeased and Residual respectively: 
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Analysis of variance 

  
Variate: %1930 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 3  1800.5  600.2  1.30   
  
Block._units_ stratum 
CuttingsCeased 3  12941.0  4313.7  9.37  0.004 
Residual 9  4144.5  460.5     
  
Total 15  18886.0       

 

The off-diagonal elements are the sum of products between the corresponding terms from 

pairs of ANOVAs. The Residual matrix provides the estimated correlations of the data among 

years. There are 9 df for each term in the matrix, so the variance matrix is: 

 

460.4 

273.1 929.2 

335.6 888.9 1368.4 

445.8 455.4 667.1 825.9 

 

and the correlation matrix from this is: 

 

1 

0.418 1 

0.423 0.788 1 

0.723 0.520 0.628 1 

 

The correlation matrix from the antedependence model (with no Block.Year random term) 

was similar, apart from the correlation between 1930 and 1933 data. (There are only 9 df for 

variances and covariances, so this discrepancy is not unsurprising.) 

 

1 

0.45 1 

0.39 0.86 1 

0.31 0.69 0.80 1 
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Appendix 1 Revision of basic random sampling 

 

Distribution of a sample mean of n data 

values from a normal distribution with mean 

µ and standard deviation σ 

y  is normally distributed with mean µ and 

standard deviation 
2 / nσ  

 

The standard error of a mean (sem) sem = 
2 / nσ  or / nσ  

Distribution of the difference between two 

sample means of n1, n2 data values (resp.) 

from normal distributions with means µ1 and 

µ2 and standard deviations σ1 and σ2 

1 2y y−  is normally distributed with mean  

µ1-µ2 and standard deviation
2 2

1 1 2 2/ /n nσ + σ  

The standard error of a difference between 

two means (sed) 

sed =
2 2

1 1 2 2/ /n nσ + σ  

 = ( )2

1 21/ 1/n nσ +  when σ1 = σ2 

 =
22 / nσ  when σ1 = σ2 and n1 = n2 

The sample variance of Y1, Y2, … Yn, defined 

as s
2
, estimates σ2

 

2

2 1

( )

1

n

i

i

Y y

s
n

=

−
=

−

∑
 

The sample variance of 1, ,
t

y yK  estimates 

σ2
/n 

providing each mean comes from the same 

numbers of replicates from a common 

distribution 

 

In experimental work, one almost never knows the true population variance σ2
, and hence it 

needs to be estimated. This affects the distribution used in analysing experimental data.  

 

One-sample test statistic (we are usually 

interested in µ1 = 0) 

1 1 1 1

2

1 1/

y y
t

sems n

− µ − µ
= = , df = n-1 

Two-sample test statistics (we are usually 

interested in µ1 - µ2= 0). When we are happy 

to assume 2 2

1 2σ = σ  we use a pooled estimate 

of variance obtained as a weighted variance 

with df as weights: 

( ) ( )
( ) ( )

2 2

1 1 2 22

1 2

1 1

1 1
p

n s n s
s

n n

− + −
=

− + −
 

 

( ) ( )1 2 1 2
y y

t
sed

− − µ − µ
= , where 

sed = 
2 2

1 2

1 2

s s

n n
+  if 2 2

1 2σ ≠ σ , df complex 

 2

1 2

1 1
p

s
n n

 
+ 

 
 if 2 2

1 2σ = σ ,  

  df = ( ) ( )1 21 1n n− + −  

 

95% confidence interval for µ 1 crit
y t sem±  

95% confidence interval for µ1 - µ2 

( )1 2 crity y t sed− ±  = ( )1 2y y lsd− ±   

where lsd=
crit

t sed  is known as the “least 

significant difference” 

 

For more complex analyses the estimate of variance used is based on the appropriate stratum 

variance (with appropriate degrees of freedom). 

  



 Statistical Advisory & Training Service Pty Ltd 

162 

 

Various experimental scenarios 

 

Scenario 1 Cultivars randomised to demonstration plots 

Cultivar 1                 

 
Cultivar 2                 

 
Cultivar 3                 

 
Cultivar 4                 

 

 

Scenario 2 Cultivars randomised to demonstration plots, 4 random grid samples taken in 

each 

Cultivar 3                 

 Cultivar 2                 

 Cultivar 4                 

 Cultivar 1                 

 

 

Scenario 3 Cultivars (colour coded) randomised to plots within each of 4 blocks 

Block 1                 

 Block 2                 

 Block 3                 

 Block 4                 

 

 

Scenario 4 A different method of cultivation (borders colour coded blue/black) is chosen 

at random to half of each block, then cultivars (colour coded) randomised to 

plots within each of 4 blocks 

Block 1                 

 Block 2                 

 Block 3                 

 Block 4                 
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Appendix 2 Summary of basic experimental design concepts 

 

Random sampling is important to remove bias and to allow the parameters (mean, standard 

deviation, and so on) of the distribution from which the sample is drawn to be estimated. The 

more replicates you can provide, the more accurate will be your estimates. How many 

replicates to provide is often the most difficult question to answer: as we will see, we need (a) 

some idea of the anticipated variation in our data, as well as (b) an understanding of how 

large a difference we are hoping to demonstrate, before a decision can be made. When it 

comes to designing an experiment, GenStat will always provide a random plan for the 

experiment: a “blueprint” that can be used in the field. The plan is a simple spreadsheet 

which we augment with the data available, and analyse by simple point and click. 

 

Treatments can only be compared if they are properly replicated. Suppose you prepare four 

demonstration plots and sow out four cultivars, one in each plot (Scenario 1). You cannot 

then compare the yields from these plots, even if you obtain several sampling areas from each 

plot (Scenario 2). The cultivars are not replicated. Any differences in total yield could well be 

accidental location differences; there is no way of separating out the cultivar effects and the 

location effects. 

 

Often you perform a number of randomisations in the field, leading to differently shaped 

experimental units. Treatments can only be compared using replicates of the same shape. We 

call these different shapes strata. 

 

This leads to some basic principles. 

 

i) An experimental unit is the smallest amount of experimental material that one treatment 

is randomised to. 

 

ii) A sampling unit is the smallest amount of experimental material that is actually 

measured.  

 

iii) Experimental units are used in forming tests of particular treatments. Sampling units just 

measure how “uniform” the experimental material is, and provide no degrees of freedom 

for these tests.  

 

Basically, the way you design your experiment affects the way you analyse your data.  

 

Scenario 3 is a properly replicated trial, with each cultivar sown out in different areas. 

Replicates are ¼ block shapes. Blocks form one stratum (and blocks are not replicated, so 

strictly cannot be tested) and plots in a block form a second stratum. 

 

Scenario 4 is also properly replicated trial. However, the blocks (stratum 1) are first divided 

into two large areas (stratum 2) and different cultivation techniques applied to these two 

areas. Cultivars are applied to smaller plots (stratum 3) within these areas, thereby affecting 

the way we analyse the data, as we will see. 

  



 Statistical Advisory & Training Service Pty Ltd 

164 

 

Appendix 3 GenStat’s Design menu 

 

GenStat has the ability to generate a random design for you. Most of the common designs are 

available, including incomplete factorial designs, and designs with additional replication for 

(say) a control treatment. 

 

The design is a blueprint for conducting the experiment. It assigns the treatments to 

experimental units randomly. At the end of the experiment, add your data to the spreadsheet 

and, at least for normally or log-normally distributed data, all you need to do is point and 

click to have the analysis performed. 

 

Firstly, let’s illustrate the method with a simple one-way treatment design with four cultivars 

of oats (Vicland (1), Vicland (2), Clinton and Branch), set out in three randomized blocks in 

the field. 

 

Use Stats > Design > Generate a Standard Design. Choose One-way Design (in Randomized 

Blocks). Name the treatment factor and (optionally) the units to which the treatments are to be 

applied. Indicate the number of blocks and levels. In Options, you can Trial ANOVA with 

random data: this produces an analysis of random data, scaled so that the Residual MS is 

always 1. 

 

 
 

GenStat creates a spreadsheet and outputs the analysis. Notice the following: 

 

 The first column is a key to the plots in the field. The second integer is the block number, 

the first integer the plot number in that block. GenStat will use as many digits as required. 

Thus, for a design with 12 treatments in 3 blocks, the first two columns will indicate plots 

and the final column the block. 
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Analysis of variance 

  
Variate: _Rand_ 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Block stratum 2  13.973  6.986  6.99   
  
Block.Plots stratum 
Cultivar 3  6.448  2.149  2.15  0.195 
Residual 6  6.000  1.000     
  
Total 11  26.421       
  

Tables of means 

  
Variate: _Rand_ 
  
Grand mean  21.69  
  
 Cultivar  1  2  3  4 
   22.94  21.05  21.36  21.41 
 

Standard errors of means 

  
Table Cultivar   
rep.  3   
d.f.  6   
e.s.e.  0.577   
  
  

Least significant differences of means (5% level) 

  
Table Cultivar   
rep.  3   
d.f.  6   
l.s.d.  1.998   
  

Stratum standard errors and coefficients of variation 

  
Variate: _Rand_ 
  
Stratum d.f. s.e. cv% 
Block  2  1.322  6.1 
Block.Plots  6  1.000  4.6 

 

Diagrammatic field plan 

 Plot 1 Plot 2 Plot 3 Plot 4 

Block 1 Branch Vicland (1) Clinton Vicland (2) 

     

Block 2 Vicland (1) Vicland (2) Branch Clinton 

     

Block 3 Vicland (2) Vicland (1) Branch Clinton 

 

 



 Statistical Advisory & Training Service Pty Ltd 

166 

 

GenStat will always generate a factor column for every stratum in the experiment. We have 

seen that for a block design, blocks, while unreplicated, form one stratum, and plots (which 

provide the replication for treatment comparisons) form the second stratum. 

 

 The final column indicates which treatment to use in each plot in the field. This is the 

field plan. It is preferable at this stage to edit the column attributes (F9 is the shortcut). In 

this case, change the 1, 2, 3, 4 for cultivars to their actual names. These names are then 

part of your statistical analysis once the data become available. 

 

  
 

Having entered the experimental data into the spreadsheet, you can simply right click (in this 

example) on the PlotNo column in the spreadsheet, select Analysis > Analysis of Variance. 

The necessary structure is completed for you: your only task is to choose which variate you 

want analyzed this way. 

 

 
 

The analysis will be like the one shown (which is for GenStat’s random, scaled data). 

 

Before proceeding to other designs, we need to discuss the shortcuts that GenStat uses for 

treatment and block structures. 
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Appendix 4 Overview of analysis of variance 

 

Consider the analysis of variance for a one-way treatment design, firstly for the unblocked 

analysis and then for the randomized block analysis. 

 

a) One-way treatment design, (no blocking) 

ANOVA for one-way (no blocking) 
Source of variation d.f. s.s. m.s. v.r. F pr. 
Treatment 1  81.927  81.927  11.18  0.007 
Residual 11  80.584  7.326     
Total 12  162.511       

 

rep 7 6 

mean 56.21 61.25 

variance 9.015 5.299 

 

Firstly, the sample variance of the 13 data values is 13.534. In the ANOVA table, this is the 

Total MS, and equals 162.511/12. GenStat does not complete this entry in the table (except in 

the regression menu). 

 

The Residual SS (80.584) is the sum of squared residuals, (defined as observed – fitted). The 

Residual MS turns out to be the pooled variance estimate, that is, a weighted average of the 

individual treatment variances, with weights equal to the individual degreed of freedom of the 

sample variances: 

 7.326 = (6×9.015+5×5.299)/(6+5) 

 

The Treatment MS is calculated as follows. Assuming common variances, if there are no 

treatment mean differences, the data from both treatments come from the same population. In 

that case, the i
th

 treatment mean is an estimate of σ2
/ni. Accordingly, a weighted variance of 

these sample means, under the null hypothesis that the means are equal, will estimate σ2
. It 

also turns out that the Treatment MS and Residual MS are independent. 

 

Thus, under the null hypothesis that the means are equal, the ratio  

 

 F = Treatment MS / Residual MS is  

 

is distributed as an F variable with 1, 11 degrees of freedom.  

 

For t treatments, the situation is no different. The mean squares are interpreted as follows. 

 

To summarize: 

 

ANOVA for one-way (no blocking) 

Source of variation d.f. m.s. 

Treatments t-1 Weighted variance of treatment means 

Residual N-t Pooled estimate of variance 

Total N-1 sample variance of the data  
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b) One-way treatment design, (in randomized blocks) 

 

Analysis of variance 

  
Variate: Concentration 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Head stratum 9  116.114  12.902  5.25   
  
Head.*Units* stratum 
Vapor_Pressure 1  592.960  592.960  241.32 <.001 
Residual 9  22.115  2.457     
  
Total 19  731.189       

 

 The Total MS is still the sample variance of all the data. Thus, 731.189/19 = 38.484. 

 

 The Treatment MS is a weighted variance of the treatment means, the weights being the 

number of blocks. The two vapor pressure means are 67.04 and 56.15. Each is based on 

10 replicates. Thus, the Treatment MS is 10×sample variance of (67.04, 56.15) = 592.96. 

 

 The Block MS is a weighted variance of the block means, the weights being the number of 

treatments. There are 10 block means, (57.1, …, 59.1) and each is based on two 

observations, one from each treatment. Thus, the Block MS is 2×sample variance of (57.1, 

…, 59.1) = 12.902. 

 

The Block SS is still the sum of squares of the residuals. The Block MS is a Treatment × 

Block interaction: it measures the failure of the treatments to respond alike in each block.  

 

To summarize: 

 

ANOVA for one-way (in randomized blocks) 

Source of variation d.f. m.s. 

Blocks b-1 Weighted variance of block means, with weights t 

   

Treatments t-1 Weighted variance of treatment means, with weights b 

Residual (b-1)(t-1) Interaction between blocks and treatments 

Total bt-1 Sample variance of the data  
 

More complex balanced designs have similar structures. 
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Appendix 5 Basic rules for expansion of formulae 
 

The principle underlying a correct formulation of the blocking structure is to properly declare 

every type of experimental unit. For each stage of randomization a new experimental unit is 

created. Since the analysis exactly mimics the way the experiment is conducted in the field, a 

new stratum is created in the ANOVA table. 

 

GenStat, however, allows you to omit the lowest level of randomization on the Block Structure 

line. If you omit the lowest level stratum in Linear Mixed Models (REML), GenStat (tells 

you that it) adds it to the model. 

 

Block and treatment structures can be simplified using certain rules and operators. 

 

Terms within parentheses are evaluated first. Otherwise, the order that GenStat uses to 

evaluate formulae which include operators is as follows (see GenStat Reference Manual): 

1. . 

2. // 

3. / 

4. * 

5. + - -/ -* 

 

Generally we use . / * + and -. Formulae involving a mixture of operators of rank (5) are 

computed left to right. 

 

Let A, B, C … represent the names of factors and L and M a set of terms in a formula. 

Rule 1 L.M 
Sum of all pairwise combinations of terms in L with terms in M using 

the dot operator. For example: 

(A+B).(C+D.E) is the same as A.C + B.C + A.D.E + B.D.E 

Rule 2 L*M 
L+M+L.M. For example: 

A*C is the same as A + C + A.C 

(A+B)*C is the same as A + B + C + A.C + B.C 

Rule 3 L/M 

L+L.M where L is a term formed by combining all terms in L with the 

dot operator. For example: 

A/C is the same as A + A.C 

(A+B)/(C+D.E) is the same as A + B + A.B.C + A.B.D.E 

Rule 4 L-M 
L without any terms that appear in M. For example: 

(A+B)-(A+C) is the same as B 
A*B*C-A.B.C is the same as A+B+C+A.B+A.C+B.C 

 

For an experiment with replication but no blocks, there should be a factor indexing the units 

that form replicates (plots, pots, animals, …). If there is sub-sampling within the replicate, 

provide an additional column to index those units. It is better to use Plot 1, 2, 3, … p rather 

than Treatment 1 (Plot 1, 2, 3), Treatment 2 (Plot 1, 2, 3) and so on. The Block Structure for 

this design can be left blank (as mentioned in paragraph 2 above), or written as Plot with the 

first method of indexing plots, or Treatment.Plot with the second. For the Random Model: in 

Linear Mixed Models (REML), there is an occasional advantage one way or another. 
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Appendix 6 REML means in the presence of one or more missing values 

 

Suppose we have 8 participants randomized into two groups and tracked over 4 months.  

Participant Group Time 0 Time 1 Time 2 Time 3 

1 Control 8.8 8.5 8.7 8.5 

2 Control 5.4 4.9 5 5.2 

3 Control 2.4 2.5 2 2.2 

4 Control 5.8 5.5 5.1 4.6 

5 Treated 12.9 16.5 17.2 17.5 

6 Treated 3.8 8.2 8.5 8.5 

7 Treated 4.6 10.3 10.8 11.2 

8 Treated 3.8 9.8 10.7 11.2 

Sample means 

Control 5.60 5.35 5.20 5.13 

Treated 6.28 11.20 11.80 12.10 

 

Next, suppose that Participant 7 dropped out of the trial after Time 0. This participant had an 

initial value of 4.6, only a little below the group average of 6.28. The treated group means at 

Times 1, 2 and 3 would not be expected to be very different from the ones above, provided 

that Participant 7 did not respond unexpectedly. That is, if the participant in question 

continued to have values just a little below the averages at these times, omitting these values 

at Times 1, 2 and 3 would (be expected to) increase the means just a little at those times.  

Compare what happens when these three values are omitted: 

Participant Group Time 0 Time 1 Time 2 Time 3 

1 Control 8.8 8.5 8.7 8.5 

2 Control 5.4 4.9 5 5.2 

3 Control 2.4 2.5 2 2.2 

4 Control 5.8 5.5 5.1 4.6 

5 Treated 12.9 16.5 17.2 17.5 

6 Treated 3.8 8.2 8.5 8.5 

7 Treated 4.6 

8 Treated 3.8 9.8 10.7 11.2 

 

Sample means 

Control 5.60 5.35 5.20 5.13 

Treated 6.28 11.50 12.13 12.40 

 

This is a simple repeated measures analysis, with each participant having repeated measures 

at 4 times. We used a Linear Mixed Model (Residual Maximum Likelihood) analysis in 

GenStat - we refer to this analysis as LMM (REML). We allowed the variance to change over 
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time, and allowed for repeated data being correlated in an autoregressive order 1 (AR1) time 

series - a power model when the times are unequally spaced. 

What does such a LMM (REML) analysis produce? Here are the sample and REML means 

with Participant 7 dropping out of the trial after Time 0: 

Participant Original sample means 

1 Control 5.60 5.35 5.20 5.13 

2 Treated 6.28 11.20 11.80 12.10 

3 Sample means with 3 missing values 

4 Control 5.60 5.35 5.20 5.13 

5 Treated 6.28 11.50 12.13 12.40 

6 LMM (REML) means 

7 Control 5.60 5.35 5.20 5.13 

8 Treated 6.28 11.02 11.64 11.91 

 

You can see that the sample means with 3 missing values are adjusted downwards for the 

treated group at times 1, 2 and 3, and are closer to what the original means were for the 

complete set of data.  

Next suppose that Participant 5 dropped out of the trial after Time 0. This participant had an 

initial value of 12.9, a long way above the group average of 6.28. The treated group means at 

Times 1, 2 and 3 would therefore be expected to be very different from the original sample 

means, provided that Participant 5 did not respond unexpectedly. Since the participant had an 

initial pressure a long way above the average, omitting his values at Times 1, 2 and 3 would 

(be expected to) lower the means radically at those times. They would be very biased 

estimates of the true means, since the “worst” performing participant is excluded at those 

times. 

Compare what happens when these three values are omitted, and what happens when we use 

a LMM (REML) analysis as described above: 

  

Means are slightly high in 

comparison to the original (known) 

sample means 
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Participant Group Time 0 Time 1 Time 2 Time 3 

1 Control 8.8 8.5 8.7 8.5 

2 Control 5.4 4.9 5 5.2 

3 Control 2.4 2.5 2 2.2 

4 Control 5.8 5.5 5.1 4.6 

5 Treated 12.9 

6 Treated 3.8 8.2 8.5 8.5 

7 Treated 4.6 10.3 10.8 11.2 

8 Treated 3.8 9.8 10.7 11.2 

 

Original sample means 

Control 5.60 5.35 5.20 5.13 

Treated 6.28 11.20 11.80 12.10 

Sample means with 3 missing values 

Control 5.60 5.35 5.20 5.13 

Treated 6.28 9.43 10.00 10.30 

LMM (REML) means 

Control 5.60 5.35 5.20 5.13 

Treated 6.28 11.54 12.26 12.47 

 

You can see that the sample means with 3 missing values are adjusted upwards, and by a 

long way, for the treated group at times 1, 2 and 3, and are closer to what the original means 

were for the complete set of data.  

Means are too low in comparison to 

the original (known) sample means 


