
 

 

 

 

 

Regression & Generalized 

Linear (Mixed) Models 

 

 
      

 

 

 

 

 

Mick O’Neill 

 

STatistical Advisory & Training Service Pty Ltd 
 

Last updated August 2010 

 





Introduction 

In recent years a general algorithm, Restricted Maximum Likelihood (REML), has been 

developed for estimating variance parameters in linear mixed models (LMM). This topic is 

covered in our manual ANOVA & REML – a guide to linear mixed models in an 

experimental design context (see www.stats.net.au and Resources). 

This manual covers classic statistical techniques of linear and non-linear regression for 

normally distributed data, and introduces the General Linear Model (GLM) for data that are 

not normally distributed. When the analysis of non-normal data includes random terms, a 

General Linear Mixed Model is discussed. It therefore helps to have the basic concepts of 

REML and deviance for these topics. The statistical package GenStat is used throughout. The 

current version is 13, although the analyses can generally be performed using the Discovery 

Edition released in 2010. 

In general, data from two familiar text books will be used as examples. The editions we used 

are the following. 

Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods. Seventh Edition. Ames 

Iowa: The Iowa State University Press.  

Steel, R.G.D. and Torrie, J.H. (1980). Principles and Procedures of Statistics: a Biometrical 

Approach. Second Edition. New York: McGraw-Hill Kogakusha.  

Other sources for data include an example from GenStat’s Statistics Guide available in its 

Help menu, and an example from each of 

Diggle, P.J. (1983). Statistical Analysis of Spatial Point Patterns. London: Academic Press. 

Mead, R. and Curnow, R.N. (1990). Statistical methods in agricultural and experimental 

biology. Chapman and Hall, London. 

Ratkowsky, D.A. (1990). Handbook of nonlinear regression models. 102-791-088 (Last 

edited on 2002/02/27 18:18:23 US/Mountain) 

The training manual was prepared by Mick O’Neill from the Statistical Advisory & 

Training Service Pty Ltd. Contact details are as follows. 

Mick O’Neill mick@stats.net.au 

StStStStatistical AAAAdvisory & TTTTraining SSSService Pty Ltd 
www.stats.net.au  
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Section 1 - Correlation 
 

Firstly, suppose we have n pairs of observations, (X1, Y1), (X2, Y2), …, (Xn, Yn). Both could be 

random variates, or one (say the X variate) could be controlled as part of the experiment (e.g. 

different set temperature chambers, sowing densities) and is hence a fixed variate. 

 

Both correlation and simple linear regression coefficients measure the degree of the linear 

relationship between two variables. To summarise the difference: 

 

Regression is used when one is interested in explaining a relationship between the dependent 

variate Y and the fixed variate X. It may also be used to predict future observations. If X is 

measured with error, the regression is interpreted as conditional on the X-values observed. 

 

Correlation is used when one is simply interested in measuring the co-relation between two 

variates that appear to vary linearly with each other. Neither X nor Y is more important, they 

are both variates of interest. 

 

Correlation 

 

Example 1 Data on flowers of a Nicotiana cross (Steel and Torrie, page 276) 

 

Tube length 49 44 32 42 32 53 36 39 37 45 41 48 45 39 40 34 37 35 

Limb length 27 24 12 22 13 29 14 20 16 21 22 25 23 18 20 15 20 13 

Tube base length 19 16 12 17 10 19 15 14 15 21 14 22 22 15 14 15 15 16 

 

This is clearly when correlation is of interest. GenStat allows all three variates to be plotted 

against each other. Select Graphics > Scatter Plot Matrix and select all three variates into the 

Data box. 

 

 
 

The plot on the following page shows a strong relationship between tube and limb lengths, a 

relatively strong relationship between tube and tube base lengths, and a slightly weaker linear 

relationship between tube base and limb lengths. We quantify this strength by the correlation 

coefficient defined as  
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Here we are using x  and y  as sample means, s as the sample standard deviation, and we 

introduced the concept of covariance. The sample standard deviation (sd) for Y is defined as 
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The term inside the square root is the sample variance. The covariance simply replaces the 

squared term by an equivalent expression in the second variate thereby measuring the co-

variance between Y and X. Covariances are unbounded. 

 

 
 

For the data in (1) GenStat returns the correlation coefficients below (use Stats > Summary 

Statistics > Correlations and select the 3 variates): 

 

Correlation matrix 

        
 Limb_length 1.000   
 Tube_base_length 0.678 1.000  
 Tube_length 0.955 0.797 1.000 
  Limb_length Tube_base_length Tube_length 

 

Correlation coefficients are constrained to lie between -1 and +1. If one variable tends to 

increase as the other decreases, the correlation coefficient is negative. Conversely, if the two 

variables tend to increase together the correlation coefficient is positive. A correlation of 1.0 
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indicates a perfect linear trend with a positive slope. A correlation of 0 indicates no linear 

trend. If the variates are also normally distributed, then a correlation of 0 also indicates that X 

and Y are independent. 

 

The symbol ρ (rho, Greek r) is usually used for a 

population correlation coefficient and r for a sample 

coefficient. A special test is available to determine 

whether variates are uncorrelated, that is, whether  

ρ = 0. The P-values from GenStat are as follows. 

 
Two-sided test of correlations different from zero 
  

Probabilities 
 
 Tube_base_length  0.001981  
 Tube_length  < 0.001  < 0.001 
  Limb_length Tube_base_length 

 

Clearly, all three variates are strongly linearly related 

to each other. 

 

Correlated data are extremely common in field 

experimentation. Sometimes the same plant or plot is 

measured at various times, and generally observations 

taken over a short time interval are more strongly 

correlated than those taken over a long time interval. 

Similarly, plants grown in a field tend to be more strongly correlated than those grown at 

distance. Spatial and temporal correlation models have been developed to cater for these 

common phenomena. 

 

Calculation in Excel 

 

Suppose the tube length data are named Tube_length in Excel and the limb length data 

Limb_length. 

 

= CORREL(Tube_length,Limb_length) returns the value 0.9550 (to 4 decimals). 

 

If the Data Analysis Toolpak has been added into Excel, the correlation macro produces: 

 

  Tube length Limb length Tube base length 

Tube length 1   

Limb length 0.95497792 1  

Tube base length 0.79721422 0.678111257 1 

 

Warning on calculating covariances in Excel: 

Excel has a sample variance formula =VAR and a sample standard deviation formula =STDEV. 

It has a “population” variance formula =VARP and a “population”standard deviation formula 

=STDEVP. However, the formula =COVAR(x,y) does not give us what we want. Instead, Excel 

uses n as a divisor instead of n-1!  
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Section 2 - Regression for normally distributed data 
 

Simple linear regression 

 

Example 2. .Yields of potatoes receiving amounts of fertilizer (Snedecor and Cochran, 

page 150). 

 

Amount 0 4 8 12 

Yield 8.34 8.89 9.16 9.50 

 

This is not a large data set, but a scatter plot in Excel showing a linear trendline indicates a 

very strong predictive model for yield over the range of fertiliser levels considered. We could 

not use any model generated from these data to predict the yield for more than 12 units of 

fertiliser. 

 

 
 

The line of best fit, 

 

 Yield = 8.41 + 0.0938 Fertiliser 

 

comes from a procedure known as least squares. Drop a perpendicular from each observation 

to a straight line passing through the points: these are the so-called errors, or residuals. Find 

the Residual Sum of Squares, which is simply the sum of the distances of the errors. Use a 

mathematical or numerical procedure to minimise the Residual Sum of Squares, thereby 

obtaining a line that goes through the points “as best as possible”. 

 

The general form of a simple linear regression line (in one predictor X1) is 

 

 Y = b0 + b1 X1 

y = 0.0938x + 8.41
R² = 0.9762
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Example 3 (Steel and Torrie, page 319) 

N Cl K Log(leaf burn) 

3.05 1.45 5.67 0.34 

4.22 1.35 4.86 0.11 

3.34 0.26 4.19 0.38 

3.77 0.23 4.42 0.68 

3.52 1.10 3.17 0.18 

3.54 0.76 2.76 0.00 

3.74 1.59 3.81 0.08 

3.78 0.39 3.23 0.11 

2.92 0.39 5.44 1.53 

3.10 0.64 6.16 0.77 

2.86 0.82 5.48 1.17 

2.78 0.64 4.62 1.01 

2.22 0.85 4.49 0.89 

2.67 0.90 5.59 1.40 

3.12 0.92 5.86 1.05 

3.03 0.97 6.60 1.15 

2.45 0.18 4.51 1.49 

4.12 0.62 5.31 0.51 

4.61 0.51 5.16 0.18 

3.94 0.45 4.45 0.34 

4.12 1.79 6.17 0.36 

2.93 0.25 3.38 0.89 

2.66 0.31 3.51 0.91 

3.17 0.20 3.08 0.92 

2.79 0.24 3.98 1.35 

2.61 0.20 3.64 1.33 

3.74 2.27 6.50 0.23 

3.13 1.48 4.28 0.26 

3.49 0.25 4.71 0.73 

2.94 2.22 4.58 0.23 

 

Here, b0 is the intercept and b1 the slope, that is, the change in Y for a unit increase in X. For 

the potato data, a crop with no fertiliser is predicted to produce 8.41 cwt a
-1

, and for each 

additional unit of fertiliser added, an increase in yield of 0.09 cwt a
-1

 is predicted. 

 

Furthermore, for simple linear regression, the percentage variation in yield explained by the 

model is 97.6%. This, in fact, is the square of the correlation coefficient, which turns out to 

be 0.988. (You can verify that 0.988
2
 = 0.976.)  

 

This model is a special case of a more general linear additive model involving several 

predictors which we examine now in more detail. 

 

Multiple linear regression 

 

The more general multiple linear regression model applies to data taken on a dependent 

variable Y and a set of k predictor or explanatory variables X1, X2, …, Xk. We assume we have 

n sets of data.  

 

With multiple linear regression we explain the variation in the Y values by the following 

(usually over-simplified) relationship between Y and the set of Xs 

 

 Y = (β0 + β1 X1 + … +βk Xk) + error 

 

Notice that the linearity refers to the set of parameters β0, 

β1, …, βk. Polynomial equations are special cases, with X1, 
2

2 1X X= , 3

3 1X X=  and so on. Polynomials in X are still 

linear in the parameters β0, β1, …, βk. 

 

The least squares procedure is again used to produce a 

“line of best fit”.  

 

In Example 3 we are interested in predicting burn times 

using a 3-predictor regression of log(leaf burn) on nitrogen 

(N), chlorine (Cl) and potassium (K) percentages in 

tobacco taken from farmers’ fields. 

 

A scatter matrix of the data (see over) shows weak 

correlations among the dependent variates (N, Cl and K), 

as well as negative trends in log(leaf burn) on nitrogen and 

on chlorine, and a weak positive trend with potassium. 

These correlations are: 

 

Correlation matrix 

Nitrogen 1.000    
Chlorine 0.209 1.000   
Potassium 0.093 0.407 1.000  
Log_leaf_burn -0.718 -0.500 0.179 1.000 
 Nitrogen Chlorine Potassium Log_leaf_burn 
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Regression analysis 

  
 Response variate:  Log_leaf_burn 
 Fitted terms:  Constant, Nitrogen, Chlorine, Potassium 
 

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  5.505  1.83491  40.27 <.001 
Residual  26  1.185  0.04557     
Total  29  6.690  0.23067     
  
Percentage variance accounted for 80.2 
Standard error of observations is estimated to be 0.213. 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 30  0.230  0.30 
 

Estimates of parameters 

  
Parameter estimate s.e. t(26) t pr. 
Constant  1.811  0.280  6.48 <.001 
Nitrogen  -0.5315  0.0696  -7.64 <.001 
Chlorine  -0.4396  0.0730  -6.02 <.001 
Potassium  0.2090  0.0406  5.14 <.001 
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The largest R
2
 is associated with nitrogen: if one were interested in a single predictor 

equation only, then nitrogen would be the best predictor. However, only a fraction over 50% 

(-0.718
2
 = 0.516) of the variation in log(leaf burn) data is explained by this simple 

relationship. 

 

 
Scatter matrix of nitrogen, chlorine, potassium and log(leaf burn) data of Example 3. 

 

To perform multiple regression in GenStat, choose Stats > Regression Analysis > Linear 

Models.  

 

 Simple Linear Regression refers to models with one predictor (including polynomials 

in one predictor).  

 

 Multiple Linear Regression (the other choice, with Groups, allows regression equations 

to be compared across the levels of some factor) refers to models with several 

predictors. 

 

 General Linear Regression allows factors to be included in the model. 

 

The line of best fit is reconstructed from the Estimates of Parameters table in the output: 

 

log(leaf burn) = 1.811 - 0.5315 N - 0.4396 Cl+ 0.2090 K 
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Interpreting regression coefficients 

 

A particular regression coefficient indicates the amount that Y will increase (or decrease) by 

for a unit rise in that predictor variable, keeping the other predictor variables fixed. 

 

For example, for two types of tobacco with the same percentage of chlorine and potassium, 

one with 1% additional nitrogen will burn for -0.5315 fewer log-seconds compared to the 

other, that is, for only about 30% (= 10
-0.5315

) of the time if the transformation used was 

base10, or about 60% (= e
-0.5315

) of the time if the transformation used was the natural base. 

 

Sometimes it is sensible to interpret the intercept, but it does not always make biological 

sense to do so. In this case, a value of 1.811 would indicate the log-time that tobacco would 

burn in the absence of any nitrogen, chlorine and potassium. However, while chlorine is as 

low as 0.18%, nitrogen and potassium both exceed 2% for all tobacco samples. Interpreting 

the intercept in this case is like predicting too far away from the experimental data, which is 

not valid. 

 

In some cases, it might be better to re-write line of best fit by noting the actual solution for 

the intercept. For line of best fit 

 

 Y = b0 + b1 X1 + … + bk Xk 

 

using the LS solution 

 

 0 1 1 ...
k k

b y b x b x= − − −  

 

allows us to write the line as 

 

 ( ) ( )1 1 1 ... k k kY y b X x b X x= − − − − − . 

 

This simply emphasises predictor variates centred to their mean, and is an option in some 

GenStat procedures (eg Linear Mixed Models). For the current example, the re-arranged 

model is 

 

log(leaf burn) = 0.686 - 0.5315 (N – 3.2787) - 0.4396 (Cl – 0.8077) + 0.2090 (K – 4.6537) 
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LMM (REML) output 

 

REML will produce the centred form of the model as a default. The Fixed Model is the same 

as used in the regression menu. The Random Model is the Units factor, but since there is just 

the one residual term in the model it can be omitted. 

 

 
 

REML variance components analysis 

  
Response variate: Log_leaf_burn 
Fixed model: Constant + N + Cl + K 
Number of units: 30 
  
Residual term has been added to model 
  
Sparse algorithm with AI optimisation 
All covariates centred 
 

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
Residual  Identity Sigma2 0.0456  0.01264 
  

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
N 75.62 1 75.62 26.0  <0.001 
Cl 18.74 1 18.74 26.0  <0.001 
K 26.44 1 26.44 26.0  <0.001 
  
Dropping individual terms from full fixed model 

Same estimate of σ2
 as from 

the regression ANOVA 
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Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
N 58.35 1 58.35 26.0  <0.001 
Cl 36.23 1 36.23 26.0  <0.001 
K 26.44 1 26.44 26.0  <0.001 
  

Message: denominator degrees of freedom for approximate F-tests are calculated 
using algebraic derivatives ignoring fixed/boundary/singular variance parameters. 
  
  

Table of effects for Constant 
  
  0.6860    Standard error: 0.03897 
  
  

Table of effects for N 

  
  -0.5315    Standard error: 0.06958  
  
  

Table of effects for Cl 
  
  -0.4396    Standard error: 0.07304  
  
  

Table of effects for K 

  
  0.2090    Standard error: 0.04064 

 

 

Checking model assumptions 
 

Standard practice with any analysis is to check that model assumptions appear satisfactory. 

 

Normality. This assumption is not the most critical assumption, but can be checked 

in GenStat using histograms or probability plots of residuals. Histograms 

are not particularly useful for small data sets. 

 

Constant variance A plot of standardised residuals against fitted values is one way to detect 

a problem with the variance assumption. The plot should show no trend, 

be randomly scattered around 0, with positive and negative values 

equally likely at any point. Most of the points should lie within ± 2. 

Fanning is indicative of data whose variance increases with the mean, 

and is often corrected by analyzing log-transformed data instead. 

 

The nature of the treatments in an experiment may give rise to the 

suspicion that the variance may change. For example, a fanning residual 

plot may be due to the presence of a control treatment: plots untreated 

may just vary differently to treated plots. A more extreme example arises 

in say herbicide trials, where an increase in the amount of herbicide 

leads to a severe reduction in yield, with little variation. Log-

transforming will not solve these problems: removing the control data is 

one solution, using a modern REML analysis with changing variance is 

The F statistics are simply the 

squares of the corresponding t 

statistics from the regression 

analysis: 

 

 -7.64
2
 = 58.37 

 -6.02
2
 = 36.24 

 5.14
2
 = 26.42 

 

which differ only because we are 

using rounded-off estimates  

Same estimates and standard 

errors as from regression analysis 
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preferable. 

 
Independence Lack of independence can be detected spatially by plotting residuals in 

field position (an option in GenStat’s ANOVA menus). If there is a time 

element to the design, then a plot of residuals over time, or of residuals 

against lag-1 residuals, is valuable. 

 

For the log(leaf burn) data, the 3-predictor model produces residuals show a very slight trend 

and possible fanning, but given the size of the dataset, there are no real concerns with any of 

the model assumptions. The plot is obtained once the analysis is performed by clicking on 

Further Output > Model Checking. For linear regression Deviance and Pearson residuals are 

standardized. 

 

 

 
 
Standardised residual plot for the regression of log(leaf burn) on N, Cl and K. 

 

 

Compare this residual plot with the following obtained from an analysis of untransformed 

data. There is a very marked trend and fanning, which led the researchers to transform leaf 

burn times. 

 

GenStat will flag potential outliers (standardised residuals outside the ± 2 region) and 

influential points.  

 

One such influential point was indicated in this analysis. What does it mean? 
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Standardised residual plot for the regression of leaf burn on N, Cl and K. 

 

 

Influential points 

 

An influential point is one which has a strong influence in the fitting of the line. Consider the 

following hypothetical example. 

 

y = 0.0022x + 0.5713
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The presence of just one point in the right hand diagram has dramatically affected the fitted 

model: the slope changes from about 0 without the point, to 1. That is not to say the point 

isn’t important: outliers and influential points often tell you more about the system than the 

rest of the so-called “good data” (the discovery of the hole in the ozone layer being a 

dramatic example). 

 

You can choose to plot leverages instead of standardised residuals. For the current example, 

two other data points appear to have high leverage, but obviously not high enough to fail 

GenStat’s leverage test. 
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Plot of leverages for the log(leaf burn) analysis 

 

 

The regression ANOVA 

 

The Regression ANOVA actually tests whether Y is linearly dependent on the complete set of 

Xs. It is not a position that in general we believe scientifically, but is often the starting point 

to model exploration. To drop all Xs from the model we set up null and alternative 

hypotheses as follows: 

 

 H0: β1 = β2 = … = βk = 0 vs H1: at least one β parameter ≠ 0 

 

REGRESSION ANOVA for this set of hypotheses 

 

Source of Variation df SS MS F P 

Regression k Regression SS 
Regression SS

Regression df
 

Regression MS

Residual MS
 a 

Residual n−k−1 Residual SS 
ResidualSS

Residual df
   

Total n−1 Total SS 
Sample variance 

of all the data 
  

 

There are mathematical formulae in any standard text book for these sums of squares (SS) 

and mean squares (MS). Note that GenStat uses v.r. (variance ratio) for the F statistic (for 

that is what it is, a ratio of two potential estimates of the same variance), and F.pr. for the P 

value (since the P value is the probability of observing a variance ratio as large as, or larger 

than, the one observed, assuming an F distribution). 

 

Log_leaf_burn

Fitted values

0.20.0

0.30

0.20

0.10

1.41.2

0.15

1.0

0.25

0.05

0.80.60.4

Le
ve

ra
ge

Point flagged by 

GenStat to have 

high leverage 
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The Total MS is simply the sample variance of the log(leaf burn) data. Hence the name: 

analysis of variance. 

 

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  5.505  1.83491  40.27 <.001 
Residual  26  1.185  0.04557     
Total  29  6.690  0.23067     
  
Percentage variance accounted for 80.2 
Standard error of observations is estimated to be 0.213. 

 

The Regression SS is the variation in log(leaf burn) data that the model explains. 

 

The Residual SS is the variation in log(leaf burn) data that the model fails to explain. It is 

exactly what it says. Calculate the residual for each observed value  

 

 Residual = Observed – Fitted 

  = Y – [b0 + b1 X1 + … + bk Xk] 

  = log(leaf burn) - [1.811 - 0.5315 N - 0.4396 Cl+ 0.2090 K] 

 

then square each residual and sum the squared residuals. 

 

 

The coefficient of determination, R
2
 

 

Statistical packages generally offer two measures of the success of the model, often called R
2
 

and R
2
(adjusted). They are fractions, but usually expressed as percentages. 

 

 2 Regression SS
R

TotalSS
=  

 

and is therefore a measure of the proportion of the total variability (as defined by sum of 

squares, not variance) explained by the regression model. 

 

An alternative definition arises as follows. Since  

 

Total SS = Regression SS + Residual SS, 

 

 2 TotalSS - Residual SS Residual SS
R 1

TotalSS TotalSS
= = −  

 

Given that the Total MS is the sample variance, and the Residual MS is an estimate of σ2
, the 

variance of a value of Y given the set of Xs, it is more natural to switch the last definition to 

variances rather than sums of squares. When you do this, the resulting statistic is less biased, 

and a better measure to use when comparing models with different numbers of parameters. 

 



 Statistical Advisory & Training Service Pty Ltd 

15 

 

 2

adj

Residual MS
R 1

Total MS
= −  

 

and is therefore a measure of the proportion of the total variance explained by the regression 

model. In fact, GenStat prefers to use the description Percentage variance accounted for, in 

this case, about 80%. 

 

GenStat also presents Residual MS  as Standard error of observations is estimated to be 0.213. 

 

 

Dropping a single predictor from a model 

 

A general rule in statistics is that, for normally distributed statistics, 

 

 
obs

. .( )

statistic
t

s e statistic
=  ∼ t variable 

 

and tests that mean value of the statistic = 0. 

 

Hence, under the regression assumptions, dividing each parameter estimate by its standard 

error tests whether that the mean of that parameter is zero.  

 

Estimates of parameters 

  
Parameter estimate s.e. t(26) t pr. 
Constant  1.811  0.280  6.48 <.001 
Nitrogen  -0.5315  0.0696  -7.64 <.001 
Chlorine  -0.4396  0.0730  -6.02 <.001 
Potassium  0.2090  0.0406  5.14 <.001 

 

Care must be taken with this table. Consider H0: β1 = 0 where β1 is the coefficient of N in the 

regression model. This is tested using tobs = -0.5315/0.0696 = -7.64, which is highly 

significant (P<0.001). This says that in a model involving N, Cl and K, N cannot be dropped, 

(the effect of allowing β1 = 0 is effectively to drop the variate from the model, providing that 

Cl and K remain in the model). Proceeding to ask whether chlorine can be dropped is 

dangerous: this test assumes N and K remain. 
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Redundant predictor variables 

 

An aliased (or redundant) predictor occurs when a set of variables already included in a 

model completely explain the values of a new predictor. A simple example is as follows. 

 

Suppose you have in mind a 2-variable model 

 

 Y = β0 + β1 X1 + β2 X2 + error 

 

This apparently will explain 2 df. However, suppose that X2 and X1 are linearly related: 

 

X2 = a + b X1 

 

Then the original model only apparently involves two independent variates. In fact there is 

just one: 

 

 Y = β0 + β1 X1 + β2 X2 + error 

  = β0 + β1 X1 + β2 (a + b X1) + error 

  = (β0 + a β2) + (β1 + b β2 X1) + error 

  =β0
*
 + β1

*
 X1 + error  

 

GenStat is helpful, in that it tells you the relationship between the predictor variables in the 

process of removing redundant predictors. 

 

Allen and Cady (1982) have an example where water samples were taken along a river. A 

land survey was conducted at each sampling site, and the percentage of land allocated to 

agriculture, residential, industrial and forest use recorded. A fifth variate, other, was included. 

Thus at each site,  

 

 agriculture + residential + industrial + forest + other = 100%. 

 

The fifth variate other is redundant. If you did include this variate with the other four 

predictors, GenStat would respond: 

 

Message: term Other cannot be included in the model because it is aliased with 
terms already in the model. 
  
(Other) = 100.0 - (Agriculture) - (Forest) - (Industrial) - (Residential) 

  

The resulting model and analysis has just the first four predictors mentioned: 

 

Regression analysis 

  
 Response variate: TOTAL_N 
 Fitted terms: Constant + Agriculture + Forest + Industrial + Residential 
  

Summary of analysis 

Source d.f. s.s. m.s. v.r. F pr. 
Regression  4  2.570  0.64246  9.15 <.001 
Residual  15  1.053  0.07018     
Total  19  3.623  0.19066      
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Percentage variance accounted for 63.2 
Standard error of observations is estimated to be 0.265. 
 

Estimates of parameters 

Parameter estimate s.e. t(15) t pr. 
Constant  1.72  1.23  1.40  0.183 
Agriculture  0.0058  0.0150  0.39  0.705 
Forest  -0.0130  0.0139  -0.93  0.367 
Industrial  0.305  0.164  1.86  0.082 
Residential  -0.0072  0.0338  -0.21  0.834 

 

Another example of a redundant predictor occurs when a factor is included in a model which 

also contains the overall mean (that is, the Constant in the regression). This will be 

demonstrated in the section Regression with groups (factors). Take as an example a general 

regression involving a single factor say Sex (Male/Female). While this factor has 2 “levels”, 

only 1 degree of freedom is available in the regression. For example, if level 1 represents a 

male, then is the value in the factor column is not a 1, it must be a female. This works no 

matter how many levels the factor has. In the regression output, the model involving a factor 

with t levels will contain t-1 parameters. There will be a model for the “default” level of the 

factor (which can be changed in Spread > Column > Attributes/Format (F9 is the shortcut) or 

Spread > Factor > Reference Level. 

 

 

LMM (REML) analysis with redundant predictors 

 

GenStat allows all 5 predictors but the final predictor is simply not estimated. In this example 

we changed the default option by turning off Covariates Centred to zero Mean. 

 

REML variance components analysis 

  
Response variate: TOTAL_N 
Fixed model: Constant + Agriculture + Forest + Industrial + Residential + Other 
Number of units: 20 
  
Residual term has been added to model 
  
Sparse algorithm with AI optimisation 
Covariates not centred 
  

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
Residual  Identity Sigma2 0.0702  0.02563 
 

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Agriculture 8.30 1 8.30 15.0  0.011 
Forest 24.15 1 24.15 15.0  <0.001 
Industrial 4.13 1 4.13 15.0  0.060 
Residential 0.05 1 0.05 15.0  0.834 
Other 0.00 0 0.00 15.0  * 
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Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Agriculture 0.15 1 0.15 15.0  0.705 
Forest 0.87 1 0.87 15.0  0.367 
Industrial 3.47 1 3.47 15.0  0.082 
Residential 0.05 1 0.05 15.0  0.834  
 

Table of effects for Constant 
  
  1.722    Standard error: 1.2341  
  
  

Table of effects for Agriculture 

  
  0.005809    Standard error: 0.0150340  
  

Table of effects for Forest 
  
  -0.01297    Standard error: 0.013931  
  

Table of effects for Industrial 
  
  0.3050    Standard error: 0.16382 
  

Table of effects for Residential 
  
  -0.007227    Standard error: 0.0338301  
  

Table of effects for Other 

  
 0.0 
  
Standard error is not available. 
 

Use these P values for dropping a 

single predictor. They are identical 

to the P values from the regression t 

tests above. 
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Dropping several predictors from a model 

 

A more general test is possible. What if we were to ask whether a subset of the predictor 

variables can be omitted? For example, can we drop both agriculture and residential 

predictors form the 4-variate predictor model? 

 

This is equivalent to the following in general. 

 

We have a maximal model involving k conceivable predictor or explanatory variables. These 

are ordered for convenience only. We are interested in dropping the last s predictors from this 

model. 

 

 Y = (β0 + β1 X1 + … + βk-s Xk-s + βk-s+1 Xk-s+1 + … +βk Xk) + error 

 

Dropping the last s predictors (for convenience) gives rise to a reduced model 

 

 Y = (β0 + β1 X1 + … + βk-s Xk-s) + error 

 

This is equivalent to testing H0: βk-s+1 = … = βk = 0. The way we test this is as follows. 

 

Step 1. Fit the maximal model and note the Regression SS and Residual MS in the ANOVA. 

 

Step 2. Drop the (potentially) superfluous predictors and fit the reduced model. 

 

Step 3. Calculate the change in Residual SS between the maximal and reduced models, form 

the mean square by diving by the change in degrees of freedom and test this against 

the Residual MS from the full model. 

 

Testing H0: βk-s+1 = … = βk = 0 

Regression Source of 
SS df MS F P 

Analysis Variation 

Maximal Using all k Xs Reg SSFull k ignore 

Reduced 
Using first  

(k-s) Xs 
ReS SSReduced k-s ignore 

Calculate by 

differencing 
Lack of fit Diff. s 

diff.

s
 

Lack of fit MS

Res MS
 aaaa 

Maximal Residual Res SS  n −−−− k -1 Res MS   

Maximal Total Tot SS n − 1  

 

For non-normal data, or for testing random effects in Linear Mixed Models (REML), the 

equivalent technique is known as change in deviance. More about this later. 
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Firstly, let us illustrate this with the question: can we drop the Industrial predictor and leave 

Agriculture, Forest and Residential predictors. This is equivalent to  

 

H0: β3 = 0 vs H3: β1 ≠ 0 (assuming Industrial is the third predictor mentioned in the model) 

 

Step 1 Fit the maximal model with all 4 predictors and note the ANOVA: 

Source d.f. s.s. m.s. v.r. F pr. 
Regression  4  2.570 ignore ignore ignore 
Residual  15  1.053  0.07018     
Total  19  3.623  0.19066     

 

Step 2  Drop Industrial, fit the reduced model using the remaining 3 predictors only and 

note the new Residual SS: 

Source d.f. s.s. 
Residual  16  1.296 

 

Step 3 Calculate the change in Residual SS and df, and construct a variance ratio: 

Source d.f. s.s. m.s. v.r. F pr. 
Regression using 4 predictors 4 2.57 ignore ignore ignore 
Residual using 3 predictors 16 1.296 
Change 1 0.243 0.243 3.463 0.082 
Residual using 4 predictors 15 1.053 0.07018 
 
Total  29  6.690  0.23067     

 

Clearly, there is no statistical evidence (P=0.277) to retain the Industrial predictor in the 

model providing the other three predictors are retained. 

 

Note that 0.082 is the P value, and √3.463 = 1.86, the value we have alongside the parameter 

estimate in the 4-predictor regression output.  

 

Estimates of parameters 

Parameter estimate s.e. t(15) t pr. 
Constant  1.72  1.23  1.40  0.183 
Agriculture  0.0058  0.0150  0.39  0.705 
Forest  -0.0130  0.0139  -0.93  0.367 
Industrial  0.305  0.164  1.86  0.082 
Residential  -0.0072  0.0338  -0.21  0.834 

 

Note also that the P value 0.082 and the F value 3.463 are the same as from the Wald statistic 

from the REML output: 

Dropping individual terms from full fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Agriculture 0.15 1 0.15 15.0  0.705 
Forest 0.87 1 0.87 15.0  0.367 
Industrial 3.47 1 3.47 15.0  0.082 
Residential 0.05 1 0.05 15.0  0.834  

 

Hence the general technique for dropping a number (≥1) of predictors gives statistics that are 

identical to others already produced for this situation. 
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Next, let us ask the question: can we drop (say) the Forest and Industrial predictors from the 

model? This is equivalent to  

 

H0: β2=β3 = 0 vs H1: either β2 ≠ 0 and/or β3 ≠ 0 (assuming Forest is second and Industrial 

third in the list). 

 

Step 1 Fit the maximal model with all 4 predictors and note the ANOVA: 

Source d.f. s.s. m.s. v.r. F pr. 
Regression  4  2.570 ignore ignore ignore 
Residual  15  1.053  0.07018     
Total  19  3.623  0.19066     

 

Step 2  Drop Forest and Industrial, fit the reduced model using the remaining 2 predictors 

only and note the new Residual SS: 

Source d.f. s.s. 
Residual  17  1.347 

 

Step 3 Calculate the change in Residual SS and df, and construct a variance ratio: 

Source d.f. s.s. m.s. v.r. F pr. 
Regression using 4 predictors 4 2.57 ignore ignore ignore 
Residual using 3 predictors 17 1.347 
Change 2 0.294 0.147 2.095 0.158 
Residual using 4 predictors 15 1.053 0.07018 
 
Total  29  6.690  0.23067     

 

Again, there is no statistical evidence (P=0.158) that to retain both Forest and Industrial 

predictors in the model providing the other two predictors are retained. 
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Stepwise Regression – automatic selection of predictor variables 

 

In the previous section we examined whether a particular 3-predictor model is statistically as 

good as the 4-predictor model. We repeated the illustration with particular 3-predictor model. 

We had no idea what predictors to drop and what predictors to retain.  

 

Stepwise regression is a procedure for automatic selection of potentially important 

predictors. It is especially useful in the early stages of research for forming potential research 

hypotheses for further esamination. 

 

Firstly, from the Linear Regression menu select General Linear Regression procedure. Enter 

the response variable to be analysed, and enter all potential predictors in the Maximal 

Model, separated by + or ,. There are several approaches that GenStat offers. Occasionally a 

different final model is obtained by the different methods. 

 

1. Forward Selection.  
Start with no predictor variables in the model. Use Change Model to sequentially add 

predictors to the model, one at a time, with the most significant predictor going in first. 

Predictors are added until no further ‘significant’ predictor is left to be added. 

 

2. Backward Elimination:  

Start with all predictor variables in the model. Use Change Model to sequentially drop 

predictors from the model, one at a time, with the least significant predictor dropped first. 

Predictors are removed until no further ‘non significant’ predictor can be removed. What 

remains are the significant predictors. 

 

3. Stepwise: Combines aspects of both forwards selection and backwards elimination. Start 

with no predictor variables in the model. Use Change Model to add the best single 

predictor, then, in steps, sequentially remove existing predictors if a statistically worse 

model is not produced, or add new predictors if a statistically better model is produced. 

 

In each case, in the Change Model menu you need to  

 

 select the predictors you wish to explore – typically by clicking Select All; 

 

 set the Max Number of Steps you wish GenStat to use – typically the same as the number 

of variates and factors; 

 

 set the Test Criterion. Note that the criterion of “significant” terms in the model is 

somewhat problematic here. Since repeated testing on the same variables is being 

conducted, the usual significance levels do not really apply here. Frequently, rather than 

using P-values as the testing criteria, fixed critical F-values (Test Criterion) are used 

which are not based on the actual F-distribution. Typically, criterion values of 4.0 are 

used for stepwise methods. Why? Dropping or adding a single predictor would lead to a t 

test with 1 numerator df; an F1,ν critical value is the same as a (t critical value)
2
 which 

tends to (1.96)
2
 ≈ (2)

2
 = 4, so that value makes sense. GenStat defaults to a Test Criterion 

of 1. If this is an early stage in your research, that value may be acceptable, but several 

predictors will be entered that are unlikely to pass the test of time. 
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The output for the stepwise regression is as follows. Here we have used the original 5 

predictors which add to 100% in case the predictor Other is important (we would then need to 

think through what other land use this predictor represents).  

 

 
Step 1: Residual mean squares 

  
 0.08086   Adding    Forest 
 0.13668   Adding    Residential 
 0.14076   Adding    Other 
 0.14419   Adding    Industrial 
 0.16890   Adding    Agriculture 
 0.19066   No change  
  
Chosen action: adding Forest. 
 

Step 2: Residual mean squares 

  
 0.06531   Adding    Industrial 
 0.07663   Adding    Residential 
 0.07915   Adding    Agriculture 
 0.08086   No change  
 0.08378   Adding    Other 
 0.19066   Dropping  Forest 
  
Chosen action: adding Industrial. 
  

Step 3: Residual mean squares 

  
 0.06531   No change  
 0.06600   Adding    Agriculture 
 0.06645   Adding    Residential 
 0.06708   Adding    Other 
 0.08086   Dropping  Industrial 
 0.14419   Dropping  Forest 
  
Chosen action: no change. 

Forest is the strongest single predictor 

of the 5 potential predictors 

Industrial is also a statistically 

important predictor and adds 

additional predictive power 

No dropping or further 

addition of a predictor leads to 

an improved model 
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Notice that GenStat prints out the Res MS from each analysis it trials, tests the change in Res 

SS between the previous model and the new model, and orders the variates by the 

significance of the impact of the proposed action. We are told what the chosen action is. To 

obtain the final model, we return to regression and fit the suggested model 

 

Regression analysis 

  
 Response variate: TOTAL_N 
 Fitted terms: Constant + Forest + Industrial 
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  2  2.512  1.25619  19.24 <.001 
Residual  17  1.110  0.06531     
Total  19  3.623  0.19066     
  
Percentage variance accounted for 65.7 
Standard error of observations is estimated to be 0.256. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 7  2.040  2.96 
 19  0.660  -2.20 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 4  1.000  0.43 
 5  1.990  0.72 
 

Estimates of parameters 

  
Parameter estimate s.e. t(17) t pr. 
Constant  2.096  0.240  8.72 <.001 
Forest  -0.01648  0.00345  -4.77 <.001 
Industrial  0.1877  0.0816  2.30  0.034 

 

Thus the fitted model 

 

Total N  =  2.096 – 0.01648 Forest + 0.1877 Industrial 

 

explains over 65% of the variation in total N. Keeping the industrial land usage the same and 

increasing the area dedicated to forests by 1% lowers total N by 0.016 units. On the other 

hand, increasing land use for industrial purposes by 1% and maintaining forest land use 

increases total N by 0.188 units. 
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DD Number Year

4.5 3.8 1956_7

7.5 6.2 1956_7

9.5 7.2 1956_7

10.5 8.7 1956_7

13.0 10.2 1956_7

16.0 13.5 1956_7

18.0 15.0 1956_7

4.5 6.0 1957_8

8.0 8.5 1957_8

9.5 9.1 1957_8

11.5 12.0 1957_8

13.0 12.6 1957_8

14.0 13.3 1957_8

16.5 15.2 1957_8

 

Regression with groups (factors) 

 

One of GenStat’s great strengths is its ability to allow any of the predictors to be a factor. 

Remember, a factor is a column whose entries simply identify different conditions. So 

Variety 1, 2, 3 is a factor; there is no relation necessarily between the 1 and 2, 2 and 3: they 

could have been labels A, B, C. 

 

Mead and Curnow present the numbers of leaves (labelled Number, averaged from 10 

cauliflower plants) in each of two years, and wished to relate cauliflower growth with 

temperature (labelled DD, measured in day degrees above 32 °F, divided by100). 

 

Example 4. From Mead and Curnow (1990 Page 161) 

 

1956/7 season 1957/8 season 

DD Number DD Number 

4.5 3.8 4.5 6.0 

7.5 6.2 8.0 8.5 

9.5 7.2 9.5 9.1 

10.5 8.7 11.5 12.0 

13.0 10.2 13.0 12.6 

16.0 13.5 14.0 13.3 

18.0 15.0 16.5 15.2 

 

Interest lay in which model best describes both years (year = 1, 2) of data: 

 

Common line: Mean leaf number = b0 + b1 DD 1 intercept+1 slope = 2 parameters 

Parallel lines: Mean leaf number = b0,year + b1 DD 2 intercepts+1 slope = 3 parameters 

Separate lines: Mean leaf number = b0,year + b1,year DD 2 intercepts+2 slopes = 4 parameters 

 

These are simple applications of testing various reduced models in a general linear model 

framework. The maximal model is the separate lines situation. 

 

To compare the two regression lines in GenStat the data need to 

be stacked first, and a factor column created to identify year. 

Note that the data being analysed, average number of leaves, is 

related to a Poisson distribution. In fact, if the numbers of 

leaves on one plant is Poisson with mean µ, then the total 

numbers of leaves on 10 plants is Poisson with mean 10µ. The 

variance of a Poisson distribution is the same as the mean, so if 

the mean changes across day degrees or years, so must the 

variance. Hence, we might anticipate that the residual plots 

following regression will cast doubt about the constant variance 

assumption. To overcome this problem, we should analyse the 

data using log-linear modelling (to be done later). 

 

A common regression line is obtained by simply analysing the 

stacked data ignoring the year factor; the model involves just 

DD.  
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 common line 

 parallel lines 

 separate lines 
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Parallel regression lines are obtained by adding the factor Year to the model to be fitted. 

GenStat will give output for a reference line, and the regression coefficients allow 

adjustments to be made for the intercept for the other levels of the included factor. 

 

Regression analysis – output for parallel lines 

  
 Response variate:  Number 
 Fitted terms:  Constant + DD + Year 
  

Summary of analysis 

Source d.f. s.s. m.s. v.r. F pr. 
Regression  2  165.532  82.7660  506.57 <.001 
Residual  11  1.797  0.1634     
Total  13  167.329  12.8715     
  
Percentage variance accounted for 98.7 
Standard error of observations is estimated to be 0.404. 
 

Estimates of parameters 

Parameter estimate s.e. t(11) t pr. 
Constant  -0.010  0.337  -0.03  0.978 
DD  0.8186  0.0266  30.81 <.001 
Year 1957_8  1.962  0.216  9.08 <.001 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Year   1956_7 
 

Accumulated analysis of variance 

Change d.f. s.s. m.s. v.r. F pr. 
+ DD  1  152.0694  152.0694  930.74 <.001 
+ Year  1  13.4626  13.4626  82.40 <.001 
Residual  11  1.7972  0.1634     
Total  13  167.3293  12.8715     

 

Separate regression lines are obtained by adding the factor DD.Year to the model to be fitted 

in addition to Year. GenStat will give output for a reference line, and the regression 

coefficients allow adjustments to be made for the intercept and for the slope for the other 

levels of the included factor. Note that you now have a model 

 
 DD + Year + DD.Year 
 

which can be shortened to DD*Year. More of this later in the design section. 

 

Basically, when you have a factor with say t levels, GenStat uses t columns, each column 

representing a different level of the factor, with a value +1 for an observation belonging to 

that level of the factor, and a 0 otherwise. 

 

The model that GenStat prints out is appropriate for the “reference” level it chooses. You can 

change this reference level if you wish (eg click in the factor column of the spreadsheet and 

hit F9).  
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There is a procedure which tests whether common, parallel or separate models are better: 

namely, Linear Regression with Groups. There are three parts to the output. There is strong 

evidence (P<0.001) to conclude that parallel regression lines are necessary, but no significant 

evidence (P=0.372) that separate lines are needed. On average, there are two extra leaves per 

cauliflower in the first season, however, growth over the season is similar, with about 82 

leaves added for a 100 increase in (coded) day degrees. 

 

Once the comparisons are done, you can choose which model to go with. In fact, you have 

the choice of re-running (and plotting, in Further Output) the chosen analysis so that the 

actual models are printed out (together with standard errors of all the intercepts and slopes) 

for the different factor levels, not just as they differ from the reference model. 

 

Part 1 –common model 

 Response variate:  Number 
 Fitted terms:  Constant + DD 
 

Summary of analysis 

Source d.f. s.s. m.s. v.r. F pr. 
Regression  1  152.07  152.069  119.58 <.001 
Residual  12  15.26  1.272     
Total  13  167.33  12.871     
 
… 

Estimates of parameters 

Parameter estimate s.e. t(12) t pr. 
Constant  1.066  0.879  1.21  0.248 
DD  0.8101  0.0741  10.94 <.001 

  

Part 2 – parallel models 

 Response variate:  Number 
 Fitted terms:  Constant + DD + Year 
 

Summary of analysis 

Source d.f. s.s. m.s. v.r. F pr. 
Regression  2  165.532  82.7660  506.57 <.001 
Residual  11  1.797  0.1634     
Total  13  167.329  12.8715     
Change  -1  -13.463  13.4626  82.40 <.001 
 
…  

Estimates of parameters 

Parameter estimate s.e. t(11) t pr. 
Constant  -0.010  0.337  -0.03  0.978 
DD  0.8186  0.0266  30.81 <.001 
Year 1957_8  1.962  0.216  9.08 <.001 
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Part 3 – separate models 

 Response variate:  Number 
 Fitted terms:  Constant + DD + Year + DD.Year 
 

Summary of analysis 

Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  165.676  55.2255  334.12 <.001 
Residual  10  1.653  0.1653     
Total  13  167.329  12.8715     
Change  -1  -0.144  0.1444  0.87  0.372 
 

Estimates of parameters 

Parameter estimate s.e. t(10) t pr. 
Constant  -0.249  0.425  -0.59  0.570 
DD  0.8398  0.0351  23.95 <.001 
Year 1957_8  2.525  0.640  3.94  0.003 
DD.Year 1957_8  -0.0506  0.0542  -0.93  0.372 

 

Interpretation 

 

Part 1 The common model (same intercept and slope for both years) is 

 

 Mean leaf number = 1.066 + 0.8101 DD 

 

Part 2 The parallel models (different intercepts and same slope) are 

 

 Mean leaf number =  -0.010 + 0.8186 DD for 1956/7, the reference year,  

and 

 Mean leaf number = (-0.010 + 1.962) + 0.8186 DD. 

  = 1.952 + 0.8186 DD  for 1957/8 

 

This is a statistically superior model compared to a common model (F=82.40, P<0.001). 

 

Part 3 The separate models (different intercepts and different slopes) are 

 

 Mean leaf number =  -0.249 +  0.8398 DD for 1956/7,  

and 

 Mean leaf number = (-0. 249 + 2.525) + (0.8186 + 0.0542) DD 

  = 2.276 + 0.8728 DD  for 1957/8 

 

This model is no better statistically than the parallel models (F=0.87, P=0.372). 

 

Re-running the model choosing Parallel lines, estimate lines gives the actual two intercepts 

and common slope to save you having to construct the lines yourself: 

 

Estimates of parameters 

  
Parameter estimate s.e. t(11) t pr. 
DD  0.8186  0.0266  30.81 <.001 
Season 1956_7  -0.010  0.337  -0.03  0.978 
Season 1957_8  1.953  0.330  5.92 <.001 
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time yield 

9 8.93 

14 10.80 

21 18.59 

28 22.33 

42 39.35 

57 56.11 

63 61.73 

70 64.62 

79 67.08 

Example 5. Pasture data 

from Ratkowsky (1990) 

Polynomial regression 

 

A plot of the pasture data of Example 5 shows a strong linear trend 

with a sigmoid shape typical of plants growing over time. Again 

ignoring any variance problem, polynomial regression can be used, 

though a more biologically meaningful model may be available. 

 

Polynomial regression is performed using simple or general linear 

regression, replacing time with a function pol(time;3), where 3 

governs the degree of the polynomial. We choose 3 with these data, 

anticipating the curvature at both ends. 

 

While the model explains 99.78% of the variation in yield, it is still 

only a mathematical approximation for growth over the period 9 to 79 

days. The fitted model (plotted below) is 

 

 Yield = 7.8838 - 0.15728 time + 0.03336 time
2
 - 0.00028 time

3
 

 

Regression analysis 

  
 Response variate:  yield 
 Fitted terms:  Constant + time 
 Submodels:  POL(time; 3) 
 

Summary of analysis 

Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  4641.734  1547.245  1222.20 <.001 
Residual  5  6.330  1.266     
Total  8  4648.063  581.008     
  
Percentage variance accounted for 99.8 
Standard error of observations is estimated to be 1.13. 
… 

Estimates of parameters 

Parameter estimate s.e. t(5) t pr. 
Constant  7.88  2.43  3.25  0.023 
time Lin  -0.157  0.230  -0.68  0.524 
time Quad  0.03336  0.00584  5.71  0.002 
time Cub  -0.0002772  0.0000436  -6.36  0.001 
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period RGR 

day 9 to 14 0.038 

day 14 to 21 0.078 

day 21 to 28 0.026 

day 28 to 42 0.040 

day 42 to 57 0.024 

day 57 to 63 0.016 

day 63 to 70 0.007 

day 70 to 79 0.004 

 

Non-linear regression – standard curves 

 

GenStat has a suite of non-linear standard models, including a logistic equation in the form 

 

 
( )1 B t M

C
Y A

e− −
= +

+
. 

 

This equation is commonly used for the pasture growth of the previous example, usually with 

A set to 0. The problem with polynomial regression is the absence of biological 

interpretability of the regression coefficients. The logistic equation with A=0 has 3 

parameters: 

 

M = day that the pasture is growing fastest, having reached a yield of ½ C 

C = the eventual maximum yield, and 

B = twice the relative growth rate on the day the pasture is growing 

fastest. 

 

Relative growth rate (RGR) is best estimated as change in log(yield) 

divided by change in time. It would appear that the M ≈ day 35. The RGR 

then is 0.04, so we would expect B≈0.08. Yield appears to be flattening 

out at C≈70. These are fairly good initial estimates. Choose Stats > 

Regression Analysis > Standard Curves. Select Logistic and turn off the 

option Estimate Constant Term (which here means setting A to be 0): 

 

 
  
 

Nonlinear regression analysis 

  
 Response variate:  yield 
 Explanatory:  day 
 Fitted Curve:  A + C/(1 + EXP(-B*(X - M))) 
 Constraints:  A = 0.0 
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Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  18215.364  6071.788  4521.89 <.001 
Residual  6  8.057  1.343     
Total  9  18223.420  2024.824     
  
Percentage variance accounted for 99.8 
Standard error of observations is estimated to be 1.16. 
  

Estimates of parameters 

 
Parameter estimate s.e. 
B  0.06736  0.00345 
M  38.87  1.18 
C  72.46  1.73 

 

There is very little difference visually between the two fitted cubic and logistic curves. Here 

the logistic (in green) is superimposed on the cubic (in black). The superiority of the logistic 

is in the ability to attach biological interpretation on the parameters. 

 

 
 

 

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Y
ie

ld

Day



 Statistical Advisory & Training Service Pty Ltd 

33 

 

Non-linear regression – user-built functions 

 

GenStat also allows a user to fit their own functions by choosing Stats > Regression Analysis > 

Nonlinear Models. We will use the previous logistic example to illustrate the method. You 

need to create a New model. In the sub-menu use any name for your new model (we chose 

new_curve) and then type the required equation, together with assigning a variate value for 

each X value (we chose fit). 

 

  
 

Next, we indicate the list of non-linear parameters in the model (here all three, B, M and C). 

Iteration may be problematic for some complex models, so it’s best to provide sensible and 

close initial values for these parameters. We’ll use our earlier guesses from the biology of the 

pasture: B≈0.08, M≈35 and C≈70. 

 

Note that this model has no overall mean or any linear part of the model, so we unclick 

Estimation includes linear parameters. 

 

Finally, we need to provide the variate we used on the LHS of the user-defined expression 

(remember, we used fit). 

 

Then we run the model. Iteration succeeds since we were close with our initial estimates. The 

model is the same as obtained by the standard curves menu. 
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Nonlinear regression analysis 

  
 Response variate: yield 
 Nonlinear parameters: B, M, C 
 Model calculations: new_curve 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  18215.364  6071.788  4521.89 <.001 
Residual  6  8.057  1.343     
Total  9  18223.420  2024.824     
  
Percentage variance accounted for 99.8 
Standard error of observations is estimated to be 1.16. 
  
  

Estimates of parameters 

  
Parameter estimate s.e. 
B  0.06736  0.00345 
M  38.87  1.18 
C  72.46  1.73 
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Regression with correlated errors 

 

A typical situation where the errors in regression are correlated is when repeated 

measurements are made on a single experimental unit. 

 

Example 6 Consider the weight of a single animal measured over 19 weeks from birth. A 

plot of its weight against time suggests a linear trend, although there is some suggestion of a 

slight slowdown from about week 10 with a spurt at week 16. 

 

Week 0 2 4 6 8 10 12 14 16 18 19 

Weight 232 240 247 263 275 286 294 302 308 319 326 

 

 
 

 

Linear regression with correlated errors 

 

GenStat offers a procedure to fit an AR1/power model to the errors of a simple linear 

regression. Use Stats > Repeated Measurements > Linear Regression with correlated errors. In 

this case, the time points are the same as the X values in the regression. As an option you can 

select a ML or a REML algorithm for fitting the correlation between weights one unit of time 

apart. 
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Regression analysis 

  
 Response variate: Weight 
 Weight matrix: _wgtmat based on power-distance correlation model 
 Fitted terms: Constant, Week 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  1  4889.6  4889.64  257.20 <.001 
Residual  9  171.1  19.01     
Total  10  5060.7  506.07     
  
Percentage variance accounted for 96.2 
Standard error of observations is estimated to be 4.36. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 3  247.00  -2.16 
  

Message: the residuals do not appear to be random; for example, fitted values in the 
range 261.73 to 301.37 are consistently smaller than observed values and fitted 
values in the range 232.01 to 251.83 are consistently larger than observed values. 
  

Estimates of parameters 

  
Parameter estimate s.e. t(9) t pr. 
Constant  232.01  4.12  56.26 <.001 
Week  4.954  0.309  16.04 <.001 
  

Correlation parameter estimate 

  
Phi: 0.8746 
Test for phi non-zero: chi-square 5.073 on 1 d.f., probability 0.024 

 

The line of best fit is 

 

Weight = 232 + 4.954×Week 

 

and there is a correlation of 0.8746 between the animal’s weight a week apart, and this is 

significantly different to 0 (P=0.024). 

 

However, the message suggests a systematic trend in the residuals. The actual weights in the 

middle time points are all above the fitted line, as shown in the following plot. The significant 

correlation in the errors may well be a result of a poorly chosen model. 
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Standard curves with correlated errors 

 

GenStat also offers a procedure to fit an AR1/power model to the errors of a range of 

standard curves. Use Stats > Repeated Measurements > Standard curves with correlated errors.  

 

Example 7. Roger Payne has an example in the Statistics manual in Help > GenStat Guides 

(page 1099). 

 

X 5 6 7 8 9 10 11 12 13 14 15 16 17 

Y 1.3 3.55 5.13 6.48 7.85 8.96 9.84 10.91 11.29 11.76 12.12 12.55 12.7 

 

18 19 20 21 22 23 24 25 26 27 28 29 30 

13.14 13.47 13.78 14.01 14.11 14.55 14.71 14.57 14.3 14.67 14.68 15.03 15 
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This type of response is an asymptotic regression, or an exponential with an asymptote to the 

right (right sensing in GenStat’s terminology). The equation is 

 

Y = A + B R
X
 

 

The equation that would fit the data would need B to be negative and 0<R<1. Then A would 

be the (final) value of Y as X became large (so, from the plot of the data, about 15). With a 

value X=0 in the data set, B would be the difference in Y at X=0 and the asymptotic value of 

Y (so the amount the unit will eventually increase by over time from time 0). There is not 

such value in the example, and it is not easy to project the curve backwards to obtain a close 

idea of the value of B as the plot crosses the Y axis. The parameter R governs the speed of the 

slowdown in Y. 

 

Again, GenStat offers a procedure to fit an AR1/power model to the errors of standard curves 

where that appears appropriate. Use Stats > Repeated Measurements > Standard Curves with 

correlated errors. 

 

 
 

Nonlinear regression analysis 

  
 Response variate: Y 
 Weight matrix: _wgtmat based on power-distance correlation model 
 Explanatory: X 
 Fitted Curve: A + B*(R**X) 
 Constraints: R < 1 
 

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  2  196.4891  98.24454  3132.82 <.001 
Residual  23  0.7213  0.03136     
Total  25  197.2104  7.88841     
  
Percentage variance accounted for 99.6 
Standard error of observations is estimated to be 0.177. 
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Message: the following units have large standardized residuals. 
 Unit Response Residual 
 8  10.910  2.46 
 13  12.700  -2.37 
 22  14.300  -2.22 
  

Message: the residuals do not appear to be random; for example, fitted values in the 
range 11.793 to 14.177 are consistently larger than observed values and fitted 
values in the range 7.808 to 11.226 are consistently smaller than observed values. 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 1  1.300  0.50 
 2  3.550  0.28 
  

Estimates of parameters 

  
Parameter estimate s.e. 
R  0.85432  0.00282 
B  -30.166  0.581 
A  15.1216  0.0732 
  

Correlation parameter estimate 

  
Phi: 0.4008 
Test for phi non-zero: chi-square 4.313 on 1 d.f., probability 0.038 

 

The correlation of 0.4 is significantly different to 0 (P=0.038). The plot settles down at 

A=15.12 units, and would have increased from a base of -30 at “X=0”. The plot of this model 

is as follows; 99.6% of the variation in Y is explained by the model. 
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Section 3 - Analysis of non-normal data 

 

Link functions 

 

With normally distributed data, the distribution involves a mean parameter µ and a variance 

parameter σ2
. As we have seen in the previous sections, the model for data from one 

population can be expressed as 

 

 Y = µ + Error 

 

where Error is N(0, σ2
). We used maximum likelihood or residual maximum likelihood to 

estimate µ and σ2
. 

 

For non-normal data, it is generally not possible to impose an additive model such as this. For 

example, if Y is binomial with known n and unknown p, we can write down a likelihood 

expression and maximise it to estimate p. If Y is Poisson with unknown mean µ, we can write 

down a likelihood expression and maximise it to estimate µ. 

 

When we come to many treatments involving binomial or Poisson data, we need to ensure 

that the maximum likelihood estimates are properly defined, in particular the probability of a 

success in each treatment must fall in the region (0,1), while for Poisson data each mean must 

be positive. 

 

Finney was among the first to suggest a method for analysing binomial data for designed 

experiments involving herbicides, insecticides and so on. The method became known as 

probit analysis. More often these days, scientists in this area will use logistic regression 

because it analyses log-odds as we will see. 

 

The modern method of analysing non-normal data is by maximum likelihood, in which the 

mean is modelled on a scale guaranteed to produce well defined estimates. 

 

For Poisson data, we generally assume that 

 

 E(Y) = 0 1 1b b X ...
e

+ +µ =  

 

where X1, …could be covariates to explain the change in the Poisson mean, or design features 

(treatment effects and so on). Thus, 

 

 loge(µ) = b0 + b1X1 + … 

 

We call this a linear predictor with a log-link. Estimation of the parameters in the linear 

function is by ML. 

 

For binomial data, Finney noticed that the percentage of insects dying at low doses was 

small, increased rapidly as the dose increased and obviously asymptoted to 100% kill with 

sufficiently high dose. He noted that such a shape is typical of the cumulative distribution 

function of a normal variable, and proposed that method to estimate the parameters of the 

binomial. As mentioned these days the logistic distribution is more usual. We allow the 

probability of a success to depend on linear predictors via the logistic 
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( )0 1 1 

1
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e

− + +
=

+
L

. 

 

This can be transformed as follows. Note that 

 

 
( )0 1 1 

1

b b Xp
e

p

+ +
=

−

L

. 

 

This ratio, p/(1-p), is known as the odds. If you toss a fair coin you have a 50:50 chance of a 

head, or an odds of 1. If seeds have about an 80% germination rate, the odds are 0.8:0.2, or 

4:1 - an odds of 4. 

 

Taking logs now gives 

 

 loge(odds) = 0 1 1
1

e

p
log b b X

p

 
= + + 

− 
L  

 

Thus, the link for the binomial is known as the logit link. 

 

Once you estimate the parameters of this linear predictor, you calculate the odds, then the 

estimate of the probability: 

 

 
1

odds
probability

odds
=

+
. 

 

To summarise, for non-normal data, for each distribution we have a different linear predictor 

and link function, use maximum likelihood to estimate the parameters of the linear predictor 

and use change in deviance to compare models. 

 

Background to generalized linear models 

 

This type of regression model is called a generalized linear model (GLM). From Version 12 

of GenStat you can select a particular menu for your data via Stats > Regression Analysis 

(choose Logistic Regression for binomial data, Log-Linear Models for Poisson data, Probit 

Analysis for binomial data, etc), or you can select the Generalized Linear Models general 

menu and make your selection there: 
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Background to generalised linear mixed models 

 

In the Model to be Fitted of a GLM you should really only enter fixed effects. These 

correspond to the set of predictors X1, X2, … in the linear predictor. If you do have an 

experiment involving random effects, then the mathematics is more complex and a different 

menu is available. We are now dealing with mixed models again (fixed and random effects) 

and a menu for a Generalized Linear Mixed Model (GLMM) is available. Choose this type of 

analysis via Stats > Regression Analysis > Mixed Models or from the dedicated Mixed Models 

menu. 
 

The random effects are assumed to be normally distributed for GLMMs. 

 

 
 

 

Background to hierarchical generalised linear mixed models 

 

If you believe that the random effects have a non-normal distribution then the analysis is 

again more complex. The model is known as hierarchical generalised linear mixed model 

(HGLMM). Again, choose it from Stats > Regression Analysis > Mixed Models or from the 

dedicated Mixed Models menu. The HGLMM menu contains a selection of distributions to 

choose from for the random effects. 

 

 
 

 

We include one example 

of GLMMs in this 

manual, but leave the 

more complex HGLMMs 

for another occasion. 



 Statistical Advisory & Training Service Pty Ltd 

43 

 

Binary logistic regression 

 

Firstly, let us take the 2×2 contingency table, where the rows represent different treatments. 

(There are other types of contingency tables, some of which we consider later in this section.) 

 

Example 8. Incidence of rust in Kentucky bluegrass pastures, from Steel and Torrie, page 

504 

 

Pasture field type Rust No Rust Total 

1 372 24 396 

5 330 48 378 

 

Readers may be familiar with Pearson’s χ2
 goodness of fit statistic used to test whether the 

probability of rust is the same for the two pasture types. 

 

 
2( - )2=

Observed Expected
X

Expected
∑  asymptotically χ2

 with d = (# rows-1)(# columns-1). 

 

Under a hypothesis that the probability of rust in field type 1 is the same as that for field type 

5, the best (ie ML) estimate of “Rust” is p=(372+330)/(396+378) = 0.907. This allows us to 

work out how many rust-affected clonal isolations are expected for each pasture type. (For 

example, for pasture type 1, we expect 0.907×396=359.2 to be affected.) 

 

This test is available in GenStat. However, a more common test is now used, the maximum 

likelihood χ2
 test. It is, in fact, the same as the deviance in a binary logistic analysis of these 

data. 

 

 
2

2
Observed

X Observed ln
Expected

 
= ×∑  

 
  asymptotically χ2

 with (rows-1)(columns-1) df. 

 

Analysis as a contingency table 

 

Choose Stats > Statistical Tests > Contingency Tables. If you have not already done so, click 

Create Table and choose Spreadsheet. Then enter or copy the data to the table, and click back 

to the menu. Choose the Method (Pearson or Maximum Likelihood) and, in Options, if you wish 

to see expectations or not. 

 

For these data the test values are virtually identical: 

 

Chi-square test for association between C2 and C3 

  
Pearson chi-square value is 10.10 with 1 d.f.  
Probability level (under null hypothesis) p = 0.001 
 

Chi-square test for association between C2 and C3 

  
Likelihood chi-square value is 10.25 with 1 d.f.  
Probability level (under null hypothesis) p = 0.001 
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Clearly, there is strong evidence (P=0.001) that individual probability estimates are required 

for the two pasture types. We would use  

 

 Pasture type 1: p = 372/396 = 0.939 

 Pasture type 2: p = 330/378 = 0.873 

 

 

Analysis via logistic regression 

 

Now let us do this in GenStat’s Regression > Logistic Regression menu. You need a factor 

column to identify the two pasture types, a variate of rust numbers and a variate of totals. 

 

 
 

Regression analysis 

  
 Response variate:  Rust 
 Binomial totals:  Total 
 Distribution:  Binomial 
 Link function:  Logit 
 Fitted terms:  Constant, Pasture 
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Summary of analysis 

   mean deviance  approx 
Source d.f. deviance deviance ratio chi pr 
Regression  1  10.25  10.25  10.25  0.001 
Residual  0  0.00  *     
Total  1  10.25  10.25     
  
Dispersion parameter is fixed at 1.00. 
  

Message: deviance ratios are based on dispersion parameter with value 1. 
  

Estimates of parameters 

          antilog of 
Parameter estimate s.e. t(*) t pr. estimate 
Constant  2.741  0.211  13.01 <.001  15.50 
Pasture 5  -0.813  0.261  -3.11  0.002  0.4435 
  

Message: s.e.s are based on dispersion parameter with value 1. 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Pasture   1 

 

This is very similar to a regression output with a factor. Notice: 

 

 The Regression Deviance is 10.25, identical to the ML contingency table X
2
 statistic. 

 

 The linear predictor on the logit scale is (2.741 – 0.813 X), where X takes values 0 (for 

pasture type 1) and 1 (for pasture type 5). That is, the constant identifies the model for 

pasture type 1. The model for pasture type 5 is obtained by adding 2.741 and -0.813, 

obtaining 1.928.  

 

The odds are e
2.741

 = 15.50 (which GenStat produces as the antilog of estimate) for pasture 

type 1, and e
2.741–0.813

 = 6.876 for pasture type 5. The latter is also available by multiplying 

the default odds, 15.50, by e
-0.813

 (=0.4435, shown as the antilog of the estimate for 

pasture type 5). Thus, the odds for pasture type 5 are 6.874.  

 

Summary 

The antilog for the default level of a factor is its odds; the antilogs for the other levels of 

that factor are odds ratios. You multiply the default odds by the odds ratio to obtain the 

odds for the other levels of a factor. 

 

Once the odds are available, the estimated probabilities can be calculated as 

odds/(1+odds). We obtain 15.50/(1+15.50) = 0.939 for pasture type 1, and 

6.876/(1+6.876) = 0.873 for pasture type 5. These are what we calculated following the 

contingency table test. 

 

 If you Save the fitted values, in this case you obtain the actual data. Thus, if a factor is 

significant in a model, the fitted values are identical to the actual totals for that factor. 
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Poisson Regression 

 

In the parallel regressions section we analysed mean leaf numbers from 10 cauliflower plants 

over two years using linear regression which assumes normality. If the number of cauliflower 

leaves is Poisson, the adding the number of leaves from 10 plants is also Poisson. Multiplying 

by 10 gives the following total leaf numbers. It is true that a Poisson distribution tends to a 

normal distribution, but we can use the exact distribution for numbers like these, and use a 

Poisson regression analysis. 

 

1956/7 season 1957/8 season 

DD Number DD Number 

45 38 45 60 

75 62 80 85 

95 72 95 91 

105 87 115 120 

130 102 130 126 

160 135 140 133 

180 150 165 152 

 

We need to stack these data, creating a factor column to identify year, a column of total leaf 

numbers and a column of day degrees (DD), the predictor. 

 

We are interested in whether a single model fits the data, or parallel or separate models over 

the two years. The Model to be Fitted for separate lines is therefore DD*Years. 

 

 
 

Notice that Wald statistics are now available for GLMs. These allow us to test whether 

factors can be dropped as they are entered last in the analysis. Prior to their introduction, we 

would select Accumulated and Fit model terms individually, but then have to use all orders for 

analyzing data such as these, 
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Regression analysis 

  
 Response variate: Number 
 Distribution: Poisson 
 Link function: Log 
 Fitted terms: Constant + DD + Season + DD.Season 
 

Summary of analysis 

   mean deviance  approx 
Source d.f. deviance deviance ratio chi pr 
Regression  3  170.693  56.8976  56.90 <.001 
Residual  10  4.596  0.4596     
Total  13  175.289  13.4838     
Change  -1  -1.463  1.4630  1.46  0.226 
  
Dispersion parameter is fixed at 1.00. 
  

Message: deviance ratios are based on dispersion parameter with value 1. 
  

... 

Estimates of parameters 

          antilog of 
Parameter estimate s.e. t(*) t pr. estimate 
Constant  3.398  0.127  26.71 <.001  29.91 
DD  0.09259  0.00928  9.98 <.001  1.097 
Season 1957_8  0.426  0.181  2.35  0.019  1.531 
DD.Season 1957_8  -0.0168  0.0138  -1.21  0.226  0.9834 
  

Message: s.e.s are based on dispersion parameter with value 1. 
  
Parameters for factors are differences compared with the reference level: 
 Factor  Reference level 
 Season  1956_7 
 

Wald tests for dropping terms 

  
 Term Wald statistic d.f. chi. pr. 
DD.Season  1.465  1  0.226 

 

Notice the following. 

 

 If we have Poisson data, the “dispersion parameter”, which is the mean deviance for the 

residual term, that is, residual deviance/residual d.f., should be 1. In this case it is under-

dispersed, with a of dispersion parameter 0.4596. Is this a problem? What we do is test 

whether the deviance of 4.596 is likely to have come by chance from a χ2
 distribution 

with (in this case) a low 10 df. A lower critical probability is 0.0835. Before we do the 

experiment, there is no reason why the deviance will be greater than or less than what is 

expected, by chance. Hence the P value we would quote for this is 0.167. We would not 

reject a hypothesis that the data are Poisson. 

 

DD is a variate and the term DD.Season basically is in the model to allow different slopes for 

different years. Naturally the P value for the Wald test of this effect is the same as the P value 

for the final coefficient in the regression. This parameter estimate is not significant 

(P=0.226), and hence parallel regressions are indicated (unless the response to day degrees is 
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itself not significant). The term DD.Season can be dropped from the model. When this is 

done, Wald tests of DD and of Season are given, each adjusted for the other. 

 

Wald tests for dropping terms 

  
 Term Wald statistic d.f. chi. pr. 
 DD  152.57  1  <0.001 
 Season  16.33  1  <0.001 

 

The parameter Season 1957_8 is in the model to allow a different intercept for the second 

year, and this is significant (P<0.001). Hence there is a shift in the mean number of leaves 

over the two seasons. 

 

Similarly, DD is significant (P<0.001), indicating a strong linear relationship between leaf 

number and temperature as measured by day degrees. 

 

In the present analysis, however, linearity is on the log-scale: 

 

Estimates of parameters 

          antilog of 
Parameter estimate s.e. t(*) t pr. estimate 
Constant  3.4949  0.0972  35.95 <.001  32.95 
DD  0.08513  0.00689  12.35 <.001  1.089 
Season 1957_8  0.2169  0.0537  4.04 <.001  1.242 

 

Thus, the model for 1956/7 is 32.95×1.089
DD

 and for 1957/8 it is 1.242×32.95×1.089
DD

. 

When plotted on the data, the fitted line looks unacceptable. The original concept was a 

simple linear increase in leaf numbers with increasing temperatures, and the fitted model is 

decidedly exponential: 

 

 
 

If it seems that negative means are not likely to be obtained in the estimation process (ass 

here), it is quite acceptable to choose a different link function. In this case, the Identity link 

simply instructs the algorithm to model on the leaf number scale. 
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Using the Identity link function results in a dispersion parameter of only 0.1752. This is 

significantly under-dispersed (P=0.004) for a Poisson distribution (remember, we expect 1). 

The usual step to take in this situation is to estimate the dispersion parameter rather than fix it 

at 1, which we do in the options menu. The effect is to change the underlying distribution of 

the Wald statistic from χ2
 to F. We then find: 

 

 Separate regressions are unnecessary (P= 0.495); 

 

 Season and DD are both strongly significant (P<0.001). 

 

The new models for total leaf number are constructed from: 

 

Estimates of parameters 

  
Parameter estimate s.e. t(11) t pr. 
Constant  0.96  2.68  0.36  0.727 
DD  8.068  0.247  32.63 <.001 
Season 1957_8  20.15  2.06  9.80 <.001 

 

Thus, we obtain 

 

 Total leaf numbers =   0.96 + 8.068×DD for 1956/7, and 

 Total leaf numbers = 21.11 + 8.068×DD for 1957/8. 

 

These are very similar to those from the regression analysis, though for that analysis we used 

means rather than totals (and hence the current parameter values will be 10 times those from 

the regression). 
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Pasture Count Status 

1 372 Rust 

5 330 Rust 

1 24 No Rust 

5 48 No Rust 

 

Log-linear modelling 

 

This general analysis is used for more complex contingency tables. It turns out that binomial 

data can be treated as Poisson data conditional on the totals being fixed. Thus, provided we 

use terms in the model to fix the totals, we should obtain the same analysis using log-linear 

modelling as we do from logistic regression. Log-linear modelling, of course, is more general 

- one can have any numbers of outcomes, not just two (success/failure). 

 

Firstly, consider the incidence of rust in Kentucky bluegrass pastures again. This time we 

stack the successes and failures, and provide a factor column to identify each. Thus, the 

information in the table will need to be prepared as shown: 

 

Pasture field type Rust No Rust 

1 372 24 

5 330 48 

 

The Model to be Fitted is Pasture*Status. 

 

We need to keep the pasture totals fixed, so Pasture must be present in the model simply to 

fix these. Status alone tests whether the counts are equal, and is of no interest. The only factor 

of interest in this experiment is the apparent interaction Pasture.Status. It assesses whether the 

Rust:No Rust ratio of counts is equal for the two pasture types. 

 
 

Regression analysis 

 Response variate:  Count 
 Distribution:  Poisson 
 Link function:  Log 
 Fitted terms:  Constant + Pasture + Status + Pasture.Status 
 

Summary of analysis 

   mean deviance  approx 
Source d.f. deviance deviance ratio chi pr 
Regression  3  604.6  201.5  201.53 <.001 
Residual  0  0.0  *     
Total  3  604.6  201.5     
Change  -1  -10.3  10.3  10.25  0.001 
  
Dispersion parameter is fixed at 1.00. 
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Message: deviance ratios are based on dispersion parameter with value 1. 
 

Estimates of parameters 

          antilog of 
Parameter estimate s.e. t(*) t pr. estimate 
Constant  3.178  0.204  15.57 <.001  24.00 
Pasture 5  0.693  0.250  2.77  0.006  2.000 
Status Rust  2.741  0.211  13.02 <.001  15.50 
Pasture 5 .Status Rust  -0.813  0.261  -3.11  0.002  0.4435 
  

Message: s.e.s are based on dispersion parameter with value 1. 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Pasture   1 
 Status   No Rust 
 

Accumulated analysis of deviance 

   mean deviance  approx 
Change d.f. deviance deviance ratio chi pr 
+ Pasture  1  0.42  0.42  0.42  0.518 
+ Status  1  593.92  593.92  593.92 <.001 
Residual  1  10.25  10.25     
+ Pasture.Status  1  10.25  10.25  10.25  0.001 
Total  3  604.59  201.53     

 

Notice: 

 

 The Residual deviance is 0 and has 0 df. This is because there are only 4 cells in the table, 

hence 3 df; and we are modelling the data with 3 terms each of which has just 1 df. This 

is known as a saturated model.  

 

The fitted values for a saturated model are just the original data values. 
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 The Pasture.Status component (10.25) of the ML χ2
 is identical to that obtained using 

logistic regression. 

 

Estimates of parameters 

          antilog of 
Parameter estimate s.e. t(*) t pr. estimate 
Constant  3.178  0.204  15.57 <.001  24.00 
Pasture 5  0.693  0.250  2.77  0.006  2.000 
Status Rust  2.741  0.211  13.02 <.001  15.50 
Pasture 5 .Status Rust  -0.813  0.261  -3.11  0.002  0.4435 

 

 The fitted model is referenced to pasture type 1, no rust. The saturated model gives an 

antilog of 24, namely the actual count for that combination. Pasture type 5 then has a 

fitted count of 2×24 = 48, again the actual count. The fitted count for pasture type 1, rust 

is 24×15.5 = 372, again the actual count.   

 

This is another illustration of the rule that the presence of any main effect or interaction in 

a generalized linear model induces the fitted counts to be identical to the observed counts 

for the table concerned.  

 

 The Wald statistic in this analysis is very slightly different to that of the ML χ2
 statistic 

for the interaction. It is based on a different approach, just as the Pearson  χ2
 statistic is 

slightly different to the ML  χ2
 statistic. Choose either test. 

 

Wald tests for dropping terms 

  
 Term Wald statistic d.f. chi. pr. 
 Pasture.Status  9.689  1  0.002 
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Generalized Linear Mixed Models 

 

Example 9. The number of soybean plants that failed to emerge (each out of 100 plants) 

using seeds that had one of four treatments or no treatment, from Snedecor and 

Cochran, page 256. 

 

Treatment Block 1 Block 2 Block 3 Block 4 Block 5 

Control 8 10 12 13 11 

Arasan 2 6 7 11 5 

Spergon 4 10 9 8 10 

Semesan, Jr. 3 5 9 10 6 

Fermate 9 7 5 5 3 

 

If these were normally distributed data the analysis would be a standard RCB – in fact this 

was the analysis used by Snedecor and Cochran. However, the data are binomial counts in a 

block design. Blocks are usually regarded as random. Hence we need to use a GLMM. 

 

 
 

We have no reason to suspect that the distribution would be over- or under-dispersed. If we 

estimate the dispersion parameter, we obtain: 

 

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
Dispersn  Identity Sigma2 0.932  0.3305 

 

An estimate of 0.932 with a standard error of 0.33 clearly suggests fixing the value at 1, the 

expected dispersion parameter under the model. The analysis is as follows: 
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Generalized linear mixed model analysis 

  
Method:  c.f. Schall (1991) Biometrika 
Response variate:  Count 
Binomial totals:  100 
Distribution:  binomial 
Link function:  logit 
Random model:  Block 
Fixed model:  Constant + Treatment 
 
Dispersion parameter fixed at value 1.000  
  

Estimated variance components 

  
Random term component s.e. 
Block  0.024  0.038 
  

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
Dispersn  Identity Sigma2 1.000 fixed 
  

Tests for fixed effects 

 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Treatment 11.81 4 2.95 18.0  0.049 
  

Tables of means with standard errors 

  
 Treatment   
 Arasan -2.721 
 Control -2.115 
 Fermate -2.792 
 Semesan -2.654 
 Spergon -2.420 
 
        Estimated variance-covariance matrix 
 Arasan   0.03736     
 Control  0.00528  0.02465    
 Fermate  0.00528  0.00528  0.03943   
 Semesan  0.00528  0.00528  0.00528  0.03555  
 Spergon  0.00528  0.00528  0.00528  0.00528  0.03007 
  Arasan   Control  Fermate  Semesan  Spergon 
  

  

Standard errors of means on the 

logit scale are obtained as the 

square root of the variances, the 

diagonal elements of the variance-

covariance matrix. 
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Standard errors of differences between pairs 
              
 Treatment Arasan  1   *         
 Treatment Control 2  0.235   *       
 Treatment Fermate 3  0.267  0.240   *     
 Treatment Semesan 4  0.259  0.231  0.263   *   
 Treatment Spergon 5  0.247  0.218  0.251  0.243   * 
     1  2  3  4  5 
 

Back-transformed Means (on the original scale) 

  
 Treatment   
 Arasan 6.178 
 Control 10.767 
 Fermate 5.779 
 Semesan 6.577 
 Spergon 8.173 

  

There is evidence that the probability of failure to emerge differs across treatments 

(P=0.049). To estimate the probabilities of failure to emerge, divide the back-transformed 

means (which are mean numbers of failures from 100 seeds) by n = 100. We obtain: 0.108 

(Control), 0.062 (Arasan), 0.058 (Fermate), 0.066 (Semesan) and 0.082 (Spergon). 

 

Standard errors of back-transformed means and standard errors of differences of back-

transformed means are not available because the analysis was done on the logit scale. 

Confidence intervals for the means on the logit scale can be calculated and the end-points 

back-transformed (exponentiating to obtain the odds, and using odds/(1+odds) to obtain the 

probabilities) to provide confidence intervals for individual back-transformed means. The F 

test for treatments had a denominator df of 18, and we would therefore use a critical t value 

(2.101) based on 18 df in the calculation of confidence intervals. 

 

logit scale odds scale odds(1+odds) scale 

95% CI 95% CI 95% CI 

mean s.e. lower upper odds lower upper prob lower upper 

Arasan -2.721 0.193 -3.127 -2.315 0.066 0.044 0.099 0.062 0.042 0.090 

Control -2.115 0.157 -2.445 -1.786 0.121 0.087 0.168 0.108 0.080 0.144 

Fermate -2.792 0.199 -3.209 -2.375 0.061 0.040 0.093 0.058 0.039 0.085 

Semesan -2.654 0.189 -3.050 -2.258 0.070 0.047 0.105 0.066 0.045 0.095 

Spergon -2.420 0.173 -2.784 -2.055 0.089 0.062 0.128 0.082 0.058 0.114 

 

Differences in means are tested on the logit scale, and differences and confidence intervals 

back-transformed as above. However, differences become odds-ratios when back-

transformed. For example, Aresan has a significantly lower failure-to-emerge probability 

compared to the Control, as evidenced by: 

 

Difference on logit scale = 0.606, s.e.d. = 0.235,  

t = 0.606/0.235 = 2.58 (18 df, P = 0.019). 

odds-ratio = e
0.606

 = 1.833 

95% CI on logit scale = 0.060 ± 2.101×0.235 = (0.112, 1.099) 

95% CI of odds-ratio = (1.12, 3.00) 

  

Hence the odds of failing to 

emerge for the Control is 1.833 

times that of Aresan (but this 

could be as low as 1.12 or as high 

as 3.00) 
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The data could also be analysed via a basic generalized linear model if we are prepared to 

assume blocks are fixed. We turned on Accumulated and Fit model terms individually to 

allow the contribution from blocks to be measured as well as the effect of treatments. 

 

 
 

Regression analysis 

  
 Response variate:  Failures 
 Binomial totals:  100 
 Distribution:  Binomial 
 Link function:  Logit 
 Fitted terms:  Constant, Block, Treatment 
  

Summary of analysis 

   mean deviance  approx 
Source d.f. deviance deviance ratio chi pr 
Regression  8  18.91  2.3639  2.36  0.015 
Residual  16  15.01  0.9380     
Total  24  33.92  1.4133     
Change  -4  -11.50  2.8741  2.87  0.022 
  
Dispersion parameter is fixed at 1.00. 
  

Message: deviance ratios are based on dispersion parameter with value 1. 
 

Estimates of parameters 

          antilog of 
Parameter estimate s.e. t(*) t pr. estimate 
Constant  -3.113  0.263  -11.82 <.001  0.04448 
Block 2  0.407  0.263  1.55  0.122  1.502 
Block 3  0.516  0.258  2.00  0.046  1.676 
Block 4  0.640  0.253  2.53  0.011  1.897 
Block 5  0.318  0.267  1.19  0.234  1.374 

  

A similar estimated dispersion 

parameter as was found using a 

GLMM. A deviance of 15.01 

can be tested using a χ2
 

distribution with 16 df. 
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Treatment Control  0.607  0.235  2.58  0.010  1.835 
Treatment Fermate  -0.071  0.266  -0.27  0.790  0.9314 
Treatment Semesan, Jr.  0.067  0.259  0.26  0.796  1.069 
Treatment Spergon  0.302  0.247  1.22  0.222  1.353 
  

Message: s.e.s are based on dispersion parameter with value 1. 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Block   1 
 Treatment   Arasan 
 

Accumulated analysis of deviance 

  
   mean deviance  approx 
Change d.f. deviance deviance ratio chi pr 
+ Block  4  7.4145  1.8536  1.85  0.116 
+ Treatment  4  11.4964  2.8741  2.87  0.022 
Residual  16  15.0087  0.9380     
Total  24  33.9196  1.4133     

 

The GLMM gave a Wald F statistic of 2.95, consistent with the above. The model was 

referenced to Arasan, and we can use the P value of 0.010 (from the Treatment Control line in 

the Estimates of parameters part of the analysis) to conclude that the probability of failure for 

untreated seeds is different to that for Arasan-treated seeds. Calculations following the 

GLMM gave a P value of 0.019.) Furthermore, no other seed treatment was significant when 

compared to Arasan. 
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Ordinal logistic regression 

 

Occasionally scientists will only be able to score plants or plots and special analyses need to 

be used for score data. In this section, we introduce ordinal logistic regression for ordered 

scores. 

 

Example 10 

We will take the data from Snedecor and Cochran page 205. Their data involves ordered 

scores for improvement in health of leprosy sufferers. They analysed the data as a t test. We 

will use the same data, but imagine them to come from the following plant pathology 

experiment. Suppose Sclerotinia sclerotiorum was tested as a biological control of the 

noxious weed bitoubush (Chrysanthemoides monilifera ssp. Rotundata). Two isolates were 

assessed for pathogenicity, and varying numbers of plants were assessed per isolate. We will 

use the following 5-point ordered scale. 

 

1 = no reaction 

2 = lesions confined to <20% of leaves 

3 = lesions confined to 20% to 50% of leaves 

4 = lesions confined to 50% to 70% of leaves 

5 = lesions confined to >70% of leaves 

 

The data are the same as in Snedecor and Cochran. Here we present it in two ways. Firstly, 

we have 144 random plants with isolate 1 with varying scores, followed by 52 random plants. 

 

Isolate 1 

2 3 2 2 3 4 2 2 5 2 2 4 2 1 3 2 2 3 2 4 

2 3 2 3 4 4 2 3 3 2 3 3 5 2 4 1 2 3 4 2 

3 3 2 2 3 2 5 2 3 3 3 1 4 2 4 2 3 1 3 4 

3 1 5 4 3 2 3 5 3 3 1 4 3 3 1 2 3 4 2 3 

4 2 2 4 3 2 2 2 4 2 2 2 4 4 2 4 2 5 2 3 

1 2 4 4 3 5 2 2 2 5 3 2 2 1 4 2 3 3 3 4 

3 4 2 2 2 3 3 5 2 3 4 5 3 2 5 4 1 2 2 3 

2 4 3 1                 

 

Isolate 2 

2 3 3 2 4 3 5 5 4 2 2 3 3 2 3 4 4 4 2 5 

3 5 2 3 2 5 2 4 3 5 4 4 4 1 3 3 2 4 2 4 

2 5 4 3 4 3 3 4 4 3 3 2         

 

GenStat would need the scores in a single factor column as well as a factor column to 

identify the isolate for each plant. 

 

Alternatively, we could supply the data in frequency form. The scores would need to be in 

five variate columns, and we would need a factor to identify the isolates for each row of 

frequencies. 

 

Isolate Score1 Score2 Score3 Score4 Score5 

1 11 53 42 27 11 

2 1 13 16 15 7 
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Now plants do not suddenly jump in discrete steps from one score to the next. Rather, there is 

a continuous change in the severity of damage of the plant. A severity score of 1 represents 

undamaged plants, although damage may be slowly taking place, perhaps unseen. These 

plants have a score while the damage is confined to a point we call the first cut-point, θ1. A 

score of 2 then represents plants with damage from θ1 to some new cut-point θ2. 

 

So, generally some underlying continuous distribution is assumed, such as logistic. For the 5-

point rating scale under discussion, this would appear as follows, assuming an underlying 

logistic distribution. 

 

 
 

We do not say that the scores necessarily represent equal spacings on this continuous scale. 

To quantify the discussion to date, suppose we use Y for the continuous damage variable. 

Then a rating of 1 represents plants whose damage value on the continuous scale is any  

Y < θ1. The underlying probability of obtaining a plant with this rating is π1 = P(Y < θ1). We 

do not know θ1 and we don’t know π1. 

 

Similarly, a rating 2 represents a plant whose damage value on the continuous scale is 

anything between θ1 and θ2. The underlying probability of obtaining a plant with this rating is 

π2 = P(θ1 < Y < θ2). We don’t know θ2 and we don’t know π2. And so on. 

 

It is actually simpler to model the cumulative probabilities P(Y < θ1) = π1, P(Y < θ2) = π1+π2,  

P(Y < θ3) = π1+π2+π3,…. For notation we will define 

 

γ1 = P(Y < θ1) = π1, 

γ2 = P(Y < θ2) = π1+π2,  

γ3 = P(Y < θ3) = π1+π2+π3 and so on. (The last value must be 1.) 

 

Thus, for a 5-point scale we need to estimate four cut-points θ1 to θ4 and four probabilities π1 

to π4 (since the 5
th

 rating is a value larger than θ4 and π5 is 1- π1- π2- π3- π4) and hence γ1 to 

γ4. 

 

Now we propose a set of logistic regression equations for the cumulative probabilities: 
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( )1 1 ...

1

1 i
i b X

e
− θ − −

γ =
+

 

 

where {θi} are the cut-points for the ordered scale and X1, …, are covariates, or, as in the case 

of a designed experiment, the usual design features. On the logit scale this becomes 

 

 1 1log ...
1

i

i

i

b X
 γ

= θ − − 
− γ 

 for ratings i = 1, 2, … 

 

Note that this is sometimes referred to as the proportional odds model, because, for a given 

state (score), the ratio of the odds does not depend on the state. Notice that the log-odds 

value, and hence the odds ratio, are calculated on the cumulative scale (ie using the γi, not the 

πi). By difference, once we have estimated the cumulative probabilities we can calculate the 

individual probabilities. 

 

The parameters are estimated by maximum likelihood as with ordinary logistic regression.  

 

Choose Stats > Regression Analysis > Ordinal Regression. Then use either one of the following 

methods. 

 

Method 1 Individual plant scores (as a factor) with a treatment factor column: 

 

 
 

The same analysis is obtained by the following method. 
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Method 2 Individual score variates of frequencies with a treatment factor column: 

 

 
 

 Response variates:  ordinal model for categories defined by  
  Score1, Score2, Score3, Score4, Score5 
 Distribution:  Multinomial 
 Link function:  Logit 
 Fitted terms:  Isolate 
  

Summary of analysis 

   mean deviance  approx 
Source d.f. deviance deviance ratio chi pr 
Regression  1  6.7  6.679  6.68  0.010 
Residual  191  560.6  2.935     
Total  192  567.3  2.955     
  
Dispersion parameter is fixed at 1.00. 
 

Estimates of parameters 

          antilog of 
Parameter estimate s.e. t(*) t pr. estimate 
Cut-point 0/1  -2.572  0.303  -8.48 <.001  0.07642 
Cut-point 1/2  -0.223  0.164  -1.36  0.173  0.8001 
Cut-point 2/3  1.042  0.180  5.78 <.001  2.835 
Cut-point 3/4  2.541  0.270  9.41 <.001  12.70 
Isolate 2  0.753  0.295  2.55  0.011  2.123 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Isolate   1 
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The two isolates have significantly different (P=0.010) probability distributions of the five 

scores.  

 

Before estimating the individual probability distributions for the two isolates, it is wise to 

save the estimates so they can be opened in Excel with full accuracy. 

 

 
 

We can interpret the model as follows. 

 

The model is referenced to isolate 1. With a treatment factor with only two levels (isolate 1 

and 2) we have only one predictor in the model. Hence X1 = 1 for isolate 2 and 0 otherwise. 

 

For isolate 1 

 

log
1

i

i

i

 γ
= θ 

− γ 
 for i = 1, 2, 3 and 4. 

 

The back-transform is given in the output as the antilog of estimate. Thus, the odds for a score 

of 1 are 0.076420. Hence the estimate of the probability for a score of 1 (γ1) is 

0.076420/(1+0.076420) = 0.070995. For this cut-point, γ1 and π1 are the same. 

 

The odds for a score of 1 or 2 are 0.800074. Hence the estimate of the probability for a score 

of 1 or 2 (γ2) is 0.800074/(1+0.800074) = 0.444467. By subtraction, the estimate for π2 is 

0.444467-0.070995 = 0.373472. And so on. 

 

For isolate 2  

 

log 0.752669
1

i

i

i

 γ
= θ + 

− γ 
 for i = 1, 2, 3 and 4. 

 

This means that the odds already worked out for the reference isolate simply need to be 

multiplied by e
0.752669

, the antilog of b1 being 2.122658. Thus: 

 

The odds for a score of 1 are 0.076420×2.122658 = 0.162214. Hence the estimate of the 

probability for a score of 1 (γ1) is 0.162214/(1+0.162214) = 0.139537. For this cut-point, γ1 

and π1 are the same. And so on. 

 



 

This is very easy to do in Excel. Here the 

formulae for the two calculation columns shown alongside.

 

V W 

13   

14   

15   

16 Cut-point 0/1 -2.571507

17 Cut-point 1/2 -0.223051

18 Cut-point 2/3 1.041947

19 Cut-point 3/4 2.541250

20 isolate 2 0.752669

21   

22  score 

23  1 

24  2 

25  3 

26  4 

27  5 

28  score 

29  1 

30  2 

31  3 

32  4 

33  5 

 

Excel has very good plotting techniques to illustrate the difference in the estimated 

probability distributions in cells X29:Y33:
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This is very easy to do in Excel. Here the cells used are marked (starting from V3), and 

formulae for the two calculation columns shown alongside. 

X Y  X 

antilog antilog antilog

isolate 1 isolate 2 isolate 1

Odds 2.122658 Odds

2.571507 0.076420 0.162214 =EXP(W16)

0.223051 0.800074 1.698283 =EXP(W17)

1.041947 2.834732 6.017167 =EXP(W18)

2.541250 12.695533 26.948277 =EXP(W19)

0.752669   

  

 gammas  gammas

0.070995 0.139573 =X16/(1+X16) =Y16/(1+Y16)

0.444467 0.629394 =X17/(1+X17) =Y17/(1+Y17)

0.739226 0.857492 =X18/(1+X18) =Y18/(1+Y18)

0.926983 0.964220 =X19/(1+X19) =Y19/(1+Y19)

1 1 1

 probabilities  probabilities

0.070995 0.139573 =X23

0.373472 0.489821 =X24-X23

0.294758 0.228098 =X25-X24

0.187758 0.106727 =X26-X25

0.073017 0.035780 =X27-X26

Excel has very good plotting techniques to illustrate the difference in the estimated 

probability distributions in cells X29:Y33: 

isolate 2
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cells used are marked (starting from V3), and 

Y 

antilog 

isolate 2 

=EXP(W20) 

=X16*Y$15 

=X17*Y$15 

=X18*Y$15 

=X19*Y$15 

 

 

 

=Y16/(1+Y16) 

=Y17/(1+Y17) 

=Y18/(1+Y18) 

=Y19/(1+Y19) 

1 

 

=Y23 

=Y24-Y23 

=Y25-Y24 

=Y26-Y25 

=Y27-Y26 

Excel has very good plotting techniques to illustrate the difference in the estimated 

 

score 5

score 4

score 3

score 2

score 1


